GSNOR

GSNOR
  • 文章类型: Journal Article
    吗啡,典型的阿片类药物,广泛用于控制疼痛,但长期使用会导致各种副作用,包括上瘾,镇痛耐受性,和痛觉过敏。目前,然而,吗啡镇痛耐受发展的潜在机制尚不完全清楚.这种耐受性受各种阿片受体和激酶蛋白修饰的影响,如磷酸化和泛素化。这里,我们建立了小鼠吗啡耐受模型,以研究S-亚硝基谷胱甘肽还原酶(GSNOR)是否以及如何参与吗啡耐受.反复服用吗啡导致GSNOR下调,这增加了前额叶皮质中过多的总蛋白S-亚硝化。GSNOR的敲除或化学抑制促进了吗啡镇痛耐受的发展,GSNOR的神经元特异性过表达减轻了吗啡镇痛耐受。机械上,GSNOR缺陷增强了细胞蛋白激酶α(PKCα)在Cys78和Cys132位点的S-亚硝化,导致PKCα激酶活性的抑制,最终促进了吗啡镇痛耐受性的发展。我们的研究强调了GSNOR作为PKCαS-亚硝化的关键调节因子的重要作用及其在吗啡镇痛耐受中的参与,从而为吗啡耐受提供了一个潜在的治疗靶点.
    Morphine, a typical opiate, is widely used for controlling pain but can lead to various side effects with long-term use, including addiction, analgesic tolerance, and hyperalgesia. At present, however, the mechanisms underlying the development of morphine analgesic tolerance are not fully understood. This tolerance is influenced by various opioid receptor and kinase protein modifications, such as phosphorylation and ubiquitination. Here, we established a murine morphine tolerance model to investigate whether and how S-nitrosoglutathione reductase (GSNOR) is involved in morphine tolerance. Repeated administration of morphine resulted in the down-regulation of GSNOR, which increased excessive total protein S-nitrosation in the prefrontal cortex. Knockout or chemical inhibition of GSNOR promoted the development of morphine analgesic tolerance and neuron-specific overexpression of GSNOR alleviated morphine analgesic tolerance. Mechanistically, GSNOR deficiency enhanced S-nitrosation of cellular protein kinase alpha (PKCα) at the Cys78 and Cys132 sites, leading to inhibition of PKCα kinase activity, which ultimately promoted the development of morphine analgesic tolerance. Our study highlighted the significant role of GSNOR as a key regulator of PKCα S-nitrosation and its involvement in morphine analgesic tolerance, thus providing a potential therapeutic target for morphine tolerance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    作为信号分子,一氧化氮(NO)调节不同生物体的发育和应激反应。NO的主要生物活性是蛋白质S-亚硝基化,其在真菌中的功能仍不清楚。这里,它在稻瘟病真菌稻瘟病菌中发现,脱亚硝基化过程对于感染过程中的功能性附着层形成至关重要。NO过度积累引起的硝化应激对真菌感染有害。而S-亚硝基谷胱甘肽还原酶GSNOR介导的脱亚硝基化可在附睾形成过程中消除过量的NO毒性以促进感染。通过indoTMT开关标记蛋白质组学技术,鉴定了483种蛋白质中的741S-亚硝基化位点。关键吸食蛋白,如MgB1、MagB、Sps1、Cdc42和隔膜,被GSNOR通过脱亚硝基活化。去除上述蛋白质的S-亚硝基化位点对于适当的蛋白质结构和表观功能至关重要。因此,GSNOR介导的脱亚硝基化是附着层形成的重要调节因子。还表明,NO供体打破NO稳态,没有清除剂,以及GSNOR的化学抑制剂,是控制真菌病的有效方法。
    As a signaling molecule, nitric oxide (NO) regulates the development and stress response in different organisms. The major biological activity of NO is protein S-nitrosylation, whose function in fungi remains largely unclear. Here, it is found in the rice blast fungus Magnaporthe oryzae, de-nitrosylation process is essential for functional appressorium formation during infection. Nitrosative stress caused by excessive accumulation of NO is harmful for fungal infection. While the S-nitrosoglutathione reductase GSNOR-mediated de-nitrosylation removes excess NO toxicity during appressorium formation to promote infection. Through an indoTMT switch labeling proteomics technique, 741 S-nitrosylation sites in 483 proteins are identified. Key appressorial proteins, such as Mgb1, MagB, Sps1, Cdc42, and septins, are activated by GSNOR through de-nitrosylation. Removing S-nitrosylation sites of above proteins is essential for proper protein structure and appressorial function. Therefore, GSNOR-mediated de-nitrosylation is an essential regulator for appressorium formation. It is also shown that breaking NO homeostasis by NO donors, NO scavengers, as well as chemical inhibitor of GSNOR, shall be effective methods for fungal disease control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    NLRP3炎性体的过度激活与许多疾病的发病机理有关。然而,调控NLRP3转录调控的确切分子机制仍不清楚.在这项研究中,我们证明巨噬细胞中的S-亚硝基谷胱甘肽还原酶(GSNOR)缺乏导致NLRP3炎症小体刺激引起的Nlrp3和IL-1β表达水平和白细胞介素-1β(IL-1β)分泌显著增加。此外,使用Gsnor-/-小鼠的体内实验显示,在脂多糖(LPS)诱导的脓毒性休克和葡聚糖硫酸钠(DSS)诱导的结肠炎模型中,疾病严重程度均增加。此外,我们发现在Gsnor-/-Nlrp3-/-双基因敲除(DKO)小鼠中,LPS诱导的感染性休克和DSS诱导的结肠炎均得到改善。机械上,GSNOR缺乏增加了丝裂原活化蛋白激酶14(MAPK14)在Cys211残基的S-亚硝化,并增加了MAPK14激酶的活性,从而促进Nlrp3和Il-1β转录并刺激NLRP3炎性体活性。我们的研究结果表明,GSNOR是NLRP3炎症小体的调节因子,降低S-亚硝基化的MAPK14水平可能是缓解与NLRP3介导的炎症相关疾病的有效策略。
    Hyperactivation of the NLRP3 inflammasome has been implicated in the pathogenesis of numerous diseases. However, the precise molecular mechanisms that modulate the transcriptional regulation of NLRP3 remain largely unknown. In this study, we demonstrated that S-nitrosoglutathione reductase (GSNOR) deficiency in macrophages leads to significant increases in the Nlrp3 and Il-1β expression levels and interleukin-1β (IL-1β) secretion in response to NLRP3 inflammasome stimulation. Furthermore, in vivo experiments utilizing Gsnor-/- mice revealed increased disease severity in both lipopolysaccharide (LPS)-induced septic shock and dextran sodium sulfate (DSS)-induced colitis models. Additionally, we showed that both LPS-induced septic shock and DSS-induced colitis were ameliorated in Gsnor-/- Nlrp3-/- double-knockout (DKO) mice. Mechanistically, GSNOR deficiency increases the S-nitrosation of mitogen-activated protein kinase 14 (MAPK14) at the Cys211 residue and augments MAPK14 kinase activity, thereby promoting Nlrp3 and Il-1β transcription and stimulating NLRP3 inflammasome activity. Our findings suggested that GSNOR is a regulator of the NLRP3 inflammasome and that reducing the level of S-nitrosylated MAPK14 may constitute an effective strategy for alleviating diseases associated with NLRP3-mediated inflammation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    嵌合抗原受体T细胞(CAR-T)已被开发为难治性或复发性淋巴瘤和白血病患者的有希望的药物,但并非所有接受者都能获得持久的缓解。激活后体内扩增和记忆分化的能力有限是CAR-T治疗效率欠佳的主要原因之一。一氧化氮(NO)在线粒体动力学和T细胞活化中起着多方面的作用,但其对CAR-T细胞持久性和抗肿瘤疗效的作用仍不清楚。在这里,我们发现来自CAR的连续信号不仅促进过量的NO产生,但也抑制了T细胞中S-亚硝基谷胱甘肽还原酶(GSNOR)的表达,共同导致蛋白质S-亚硝基化增加,导致线粒体适应性受损和T细胞干细胞缺乏。有趣的是,GSNOR的强制表达促进了免疫激活后CAR-T细胞的记忆分化,使CAR-T更好地抵抗线粒体功能障碍,在体外和小鼠肿瘤模型中进一步增强CAR-T细胞扩增和抗肿瘤能力。因此,我们揭示了NO在限制CAR-T细胞持久性和功能性方面的关键作用,并定义GSNOR过表达可以提供对抗NO应激的解决方案,并使患者对CAR-T治疗具有更持久的保护作用。
    Chimeric antigen receptor-T (CAR-T) cell has been developed as a promising agent for patients with refractory or relapsed lymphoma and leukemia, but not all the recipients could achieve a long-lasting remission. The limited capacity of in vivo expansion and memory differentiation post activation is one of the major reasons for suboptimal CAR-T therapeutic efficiency. Nitric oxide (NO) plays multifaceted roles in mitochondrial dynamics and T cell activation, but its function on CAR-T cell persistence and anti-tumor efficacy remains unknown. Herein, we found the continuous signaling from CAR not only promotes excessive NO production, but also suppressed S-nitrosoglutathione reductase (GSNOR) expression in T cells, which collectively led to increased protein S-nitrosylation, resulting in impaired mitochondrial fitness and deficiency of T cell stemness. Intriguingly, enforced expression of GSNOR promoted memory differentiation of CAR-T cell after immune activation, rendered CAR-T better resistance to mitochondrial dysfunction, further enhanced CAR-T cell expansion and anti-tumor capacity in vitro and in a mouse tumor model. Thus, we revealed a critical role of NO in restricting CAR-T cell persistence and functionality, and defined that GSNOR overexpression may provide a solution to combat NO stress and render patients with more durable protection from CAR-T therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    S-亚硝基谷胱甘肽还原酶(GSNOR)。无稳态的主要调节器,是大多数植物的单拷贝基因.在莲花中,鉴定出两种GSNOR同工型,表现出相似的动力学特性,但具有不同的组织特异性表达.以前,在芥菜中进行的全基因组鉴定揭示了GSNOR的四个拷贝,每种编码在亚基分子量和pI方面不同的蛋白质。这里,我们使用2D免疫印迹报告了多种形式的GSNOR,其显示4个免疫阳性点,分别为41.5kDa(pl5.79和6.78)和43kDa(pl6.16和6.23)。为了确认,使用阴离子交换色谱法纯化GSNOR产生具有GSNOR活性的2个不同的池(GSNOR-A和GSNOR-B)。随后,基于亲和力的纯化产生1个来自GSNOR-A的多肽和2个来自GSNOR-B的多肽。尺寸排阻-HPLC证实3个GSNOR,分子量为87.48±2.74kDa(GSNOR-A);87.36±3.25和82.74±2.75kDa(GSNOR-B)。动力学分析显示GSNOR-A的Km为118±11μM,Vmax为287±22nkat/mg,而GSNOR-B的Km为96.4±8μM,Vmax为349±15nkat/mg。S-亚硝基化和NO抑制显示所有BjGSNOR的氧化还原调节。两种纯化的GSNOR均表现出可变的反硝基化效率,如生物素开关测定所示。据我们所知,这是首次证实结球芽孢杆菌中GSNOR的多个同工型的报告。
    S-nitrosoglutathione reductase (GSNOR). a master regulator of NO homeostasis, is a single-copy gene in most plants. In Lotus japonicus, two GSNOR isoforms were identified exhibiting similar kinetic properties but differential tissue-specific expressions. Previously, a genome-wide identification in Brassica juncea revealed four copies of GSNOR, each encoding proteins that vary in subunit molecular weights and pI. Here, we report multiple forms of GSNOR using 2D immunoblot which showed 4 immunopositive spots of 41.5 kDa (pl 5.79 and 6.78) and 43 kDa (pl 6.16 and 6.23). To confirm, purification of GSNOR using anion-exchange chromatography yielded 2 distinct pools (GSNOR-A & GSNOR-B) with GSNOR activities. Subsequently, affinity-based purification resulted in 1 polypeptide from GSNOR-A and 2 polypeptides from GSNOR-B. Size exclusion-HPLC confirmed 3 GSNORs with molecular weight of 87.48 ± 2.74 KDa (GSNOR-A); 87.36 ± 3.25 and 82.74 ± 2.75 kDa (GSNOR-B). Kinetic analysis showed Km of 118 ± 11 μM and Vmax of 287 ± 22 nkat/mg for GSNOR-A, whereas Km of 96.4 ± 8 μM and Vmax of 349 ± 15 nkat/mg for GSNOR-B. S-nitrosylation and inhibition by NO showed redox regulation of all BjGSNORs. Both purified GSNORs exhibited variable denitrosylation efficiency as depicted by Biotin Switch assay. To the best of our knowledge, this is the first report confirming multiple isoforms of GSNOR in B. juncea.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    破骨细胞,专有的骨吸收细胞,是骨骼重塑不可或缺的。因此,了解调节破骨细胞生成的新型信号调节剂在临床上很重要。活化T细胞核因子,细胞质1(NFATc1)是破骨细胞形成中的主要转录因子,NF-κBp65亚基与NFATc1启动子的结合是其表达所必需的。众所周知,p65的DNA结合活性可以通过各种翻译后修饰来调节。包括S-亚硝化。最近的研究表明,S-亚硝基谷胱甘肽还原酶(GSNOR)介导的蛋白质脱氮通过调节基因转录参与细胞命运的决定。然而,GSNOR在破骨细胞生成中的作用仍未被探索和神秘。这里,我们研究了GSNOR介导的p65脱氮对破骨细胞生成的影响。我们的结果表明,GSNOR在体外破骨细胞形成过程中上调。此外,用化学抑制剂抑制GSNOR损害破骨细胞分化,足体带形成,和骨吸收活性。此外,GSNOR抑制增强了p65的S-亚硝化水平,排除了p65与NFATc1启动子的结合,并抑制NFATc1表达。此外,采用脂多糖(LPS)诱导的颅骨骨溶解的小鼠模型来评估GSNOR抑制剂的体内治疗效果。我们的结果表明,GSNOR抑制剂治疗通过损害小鼠破骨细胞的形成来减轻炎性骨丢失。一起来看,这些数据表明,GSNOR活性是破骨细胞形成所必需的,通过促进p65脱氮促进p65与NFATc1启动子的结合,提示GSNOR可能是治疗溶骨性疾病的潜在治疗靶点。
    Osteoclasts, the exclusive bone resorptive cells, are indispensable for bone remodeling. Hence, understanding novel signaling modulators regulating osteoclastogenesis is clinically important. Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) is a master transcription factor in osteoclastogenesis, and binding of NF-κB p65 subunit to NFATc1 promoter is required for its expression. It is well-established that DNA binding activity of p65 can be regulated by various post-translational modifications, including S-nitrosation. Recent studies have demonstrated that S-nitrosoglutathione reductase (GSNOR)-mediated protein denitrosation participated in cell fate commitment by regulating gene transcription. However, the role of GSNOR in osteoclastogenesis remains unexplored and enigmatic. Here, we investigated the effect of GSNOR-mediated denitrosation of p65 on osteoclastogenesis. Our results revealed that GSNOR was up-regulated during osteoclastogenesis in vitro. Moreover, GSNOR inhibition with a chemical inhibitor impaired osteoclast differentiation, podosome belt formation, and bone resorption activity. Furthermore, GSNOR inhibition enhanced the S-nitrosation level of p65, precluded the binding of p65 to NFATc1 promoter, and suppressed NFATc1 expression. In addition, mouse model of lipopolysaccharides (LPS)-induced calvarial osteolysis was employed to evaluate the therapeutic effect of GSNOR inhibitor in vivo. Our results indicated that GSNOR inhibitor treatment alleviated the inflammatory bone loss by impairing osteoclast formation in mice. Taken together, these data have shown that GSNOR activity is required for osteoclastogenesis by facilitating binding of p65 to NFATc1 promoter via promoting p65 denitrosation, suggesting that GSNOR may be a potential therapeutic target in the treatment of osteolytic diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    S-亚硝基谷胱甘肽(GSNO)在一氧化氮(NO)稳态中起着核心作用,和GSNO还原酶(GSNOR)调节跨王国的GSNO细胞水平。这里,我们研究了内源性NO在番茄(Solanumlycopersicum)中塑造枝条结构,控制坐果和生长中的作用。SlGSNOR沉默促进枝条侧分枝并导致果实大小减小,对水果产量产生负面影响。在slgsnor敲除植物中大大加强,这些表型改变实际上不受SlGSNOR过表达的影响.SlGSNOR沉默或敲除会加剧蛋白质酪氨酸硝化和S-亚硝化,并导致叶原基和坐果卵巢中生长素的异常产生和信号传导,除了限制芽基托极性生长素运输流。SlGSNOR缺陷在早期果实发育时引发了广泛的转录重编程,由于生长素的限制而减少果皮细胞增殖,赤霉素和细胞分裂素的产生和信号传导。在早期发育的NO过度积累的果实中也检测到叶绿体发育和碳代谢异常,可能会限制能源供应和水果生长的基石。这些发现为内源性NO微调控制芽结构的微妙荷尔蒙网络的机制提供了新的见解。坐果和花后果实发育,强调NO-生长素相互作用与植物发育和生产力的相关性。
    S-Nitrosoglutathione plays a central role in nitric oxide (NO) homeostasis, and S-nitrosoglutathione reductase (GSNOR) regulates the cellular levels of S-nitrosoglutathione across kingdoms. Here, we investigated the role of endogenous NO in shaping shoot architecture and controlling fruit set and growth in tomato (Solanum lycopersicum). SlGSNOR silencing promoted shoot side branching and led to reduced fruit size, negatively impacting fruit yield. Greatly intensified in slgsnor knockout plants, these phenotypical changes were virtually unaffected by SlGSNOR overexpression. Silencing or knocking out of SlGSNOR intensified protein tyrosine nitration and S-nitrosation and led to aberrant auxin production and signaling in leaf primordia and fruit-setting ovaries, besides restricting the shoot basipetal polar auxin transport stream. SlGSNOR deficiency triggered extensive transcriptional reprogramming at early fruit development, reducing pericarp cell proliferation due to restrictions on auxin, gibberellin, and cytokinin production and signaling. Abnormal chloroplast development and carbon metabolism were also detected in early-developing NO-overaccumulating fruits, possibly limiting energy supply and building blocks for fruit growth. These findings provide new insights into the mechanisms by which endogenous NO fine-tunes the delicate hormonal network controlling shoot architecture, fruit set, and post-anthesis fruit development, emphasizing the relevance of NO-auxin interaction for plant development and productivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    S-亚硝基谷胱甘肽还原酶(GSNOR)是一种脱氮基转移酶,被认为具有肿瘤抑制作用,尽管相关机制在很大程度上仍不清楚.在这项研究中,我们表明肿瘤中GSNOR缺乏与结直肠癌(CRC)患者预后不良的组织病理学特征和不良的生存率相关.低GSNOR肿瘤的特征是免疫抑制微环境,排除了细胞毒性CD8T细胞。值得注意的是,GSNOR低肿瘤表现出免疫规避的蛋白质组学特征,同时能量代谢改变,其特征是氧化磷酸化(OXPHOS)受损和对糖酵解活性的能量依赖性。CRISPR-Cas9介导的GSNOR基因敲除(KO)CRC细胞的产生在体外和体内证实了GSNOR缺陷赋予了更高的致瘤和肿瘤启动能力。此外,GSNOR-KO细胞具有增强的免疫逃避特性和对免疫疗法的抵抗力,正如在将它们异种移植到人源化小鼠模型中所揭示的那样。重要的是,GSNOR-KO细胞的特征是从OXPHOS到糖酵解的代谢转移以产生能量,如乳酸分泌增加所示,对2-脱氧葡萄糖(2DG)的敏感性更高,和一个支离破碎的线粒体网络。实时代谢分析显示,GSNOR-KO细胞的运作接近其最大糖酵解速率,作为对较低OXPHOS水平的补偿,解释了他们对2DG更高的敏感性。值得注意的是,这种对2DG糖酵解抑制的更高敏感性在来自临床GSNOR低肿瘤的患者来源的异种移植物和类器官中得到了验证.总之,我们的数据支持以下观点:GSNOR缺陷诱导的代谢重编程是CRC中肿瘤进展和免疫逃避的重要机制,并且可以在治疗上利用与这种反硝基基转移酶缺陷相关的代谢脆弱性.©2023作者。由JohnWiley&SonsLtd代表英国和爱尔兰病理学会出版的病理学杂志。
    S-nitrosoglutathione reductase (GSNOR) is a denitrosylase enzyme that has been suggested to play a tumor suppressor role, although the mechanisms responsible are still largely unclear. In this study, we show that GSNOR deficiency in tumors is associated with poor prognostic histopathological features and poor survival in patients with colorectal cancer (CRC). GSNOR-low tumors were characterized by an immunosuppressive microenvironment with exclusion of cytotoxic CD8+ T cells. Notably, GSNOR-low tumors exhibited an immune evasive proteomic signature along with an altered energy metabolism characterized by impaired oxidative phosphorylation (OXPHOS) and energetic dependence on glycolytic activity. CRISPR-Cas9-mediated generation of GSNOR gene knockout (KO) CRC cells confirmed in vitro and in vivo that GSNOR-deficiency conferred higher tumorigenic and tumor-initiating capacities. Moreover, GSNOR-KO cells possessed enhanced immune evasive properties and resistance to immunotherapy, as revealed following xenografting them into humanized mouse models. Importantly, GSNOR-KO cells were characterized by a metabolic shift from OXPHOS to glycolysis to produce energy, as indicated by increased lactate secretion, higher sensitivity to 2-deoxyglucose (2DG), and a fragmented mitochondrial network. Real-time metabolic analysis revealed that GSNOR-KO cells operated close to their maximal glycolytic rate, as a compensation for lower OXPHOS levels, explaining their higher sensitivity to 2DG. Remarkably, this higher susceptibility to glycolysis inhibition with 2DG was validated in patient-derived xenografts and organoids from clinical GSNOR-low tumors. In conclusion, our data support the idea that metabolic reprogramming induced by GSNOR deficiency is an important mechanism for tumor progression and immune evasion in CRC and that the metabolic vulnerabilities associated with the deficiency of this denitrosylase can be exploited therapeutically. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    恢复脑血流量(CBF)以实现脑组织氧合(PbtO2)是缺血性脑卒中的主要治疗方法,全球成人死亡和残疾的重要原因。一氧化氮(NO)及其生物活性S-亚硝基化(SNO)储层,如s-亚硝基谷胱甘肽(GSNO),在缺血期间诱导低氧血管舒张以增强CBF。通过激活内皮NO合酶(eNOS/NOS3)和抑制III类醇脱氢酶5(ADH5)来增强SNO/GSNO的内源性库,也称为GSNO还原酶(GSNOR)。远程缺血适应(RIC),这增加了NOS3活性和SNO,是急性中风的新兴疗法。然而,迄今为止,RIC在中风临床试验中显示出中性效果。由于大多数中风患者存在内皮功能障碍和合并症,我们检验了以下假设:NOS3功能障碍和糖尿病将消除RIC治疗在中风中的保护作用,和GSNOR的先前抑制将变成RIC保护。我们的数据表明,血栓性卒中期间的RIC未能增强NOS3突变(NOS3+/-)小鼠的CBF和溶栓益处,NOS3功能障碍的遗传模型。有趣的是,糖尿病小鼠的血栓性卒中早在卒中后3小时就增强了GSNOR的活性,而不降低血浆亚硝酸盐(NO2-)。在血栓性中风中,GSNOR(GRI)的药物抑制剂和单独的RIC治疗对糖尿病小鼠均无保护作用.然而,之前用GRI和RIC治疗可提高CBF并改善恢复.在再灌注笔划模型中,糖尿病小鼠的GRI-RIC联合治疗可增强PbtO2,这是成功的微血管复流的翻译特征.此外,RIC治疗出乎意料地增加了糖尿病卒中患者卒中后6小时的炎症标志物,这些标志物与GRI联合下调,同时改善了预后。因此,我们得出的结论是,由于合并症而预先存在的NOS3功能障碍可能会抵消RIC在卒中中的益处,可以与GRI结合使用。我们的发现可能支持RIC在合并症中风中的未来临床试验。需要进一步的研究来测试和开发SNO储库作为血液相关的生物标志物,以监测RIC治疗在中风中的反应和功效。
    The restoration of cerebral blood flow (CBF) to achieve brain tissue oxygenation (PbtO2) is the primary treatment for ischemic stroke, a significant cause of adult mortality and disability worldwide. Nitric oxide (NO) and its bioactive s-nitrosylated (SNO) reservoirs, such as s-nitrosoglutathione (GSNO), induce hypoxic vasodilation to enhance CBF during ischemia. The endogenous pool of SNOs/GSNO is enhanced via the activation of endothelial NO synthase (eNOS/NOS3) and by the suppression of class III alcohol dehydrogenase 5 (ADH5), also known as GSNO reductase (GSNOR). Remote ischemic conditioning (RIC), which augments NOS3 activity and SNO, is an emerging therapy in acute stroke. However, RIC has so far shown neutral effects in stroke clinical trials. As the majority of stroke patients are presented with endothelial dysfunctions and comorbidities, we tested the hypothesis that NOS3 dysfunction and diabetes will abolish the protective effects of RIC therapy in stroke, and the prior inhibition of GSNOR will turn RIC protective. Our data demonstrate that RIC during thrombotic stroke failed to enhance the CBF and the benefits of thrombolysis in NOS3 mutant (NOS3+/-) mice, a genetic model of NOS3 dysfunction. Interestingly, thrombotic stroke in diabetic mice enhanced the activity of GSNOR as early as 3 h post-stroke without decreasing the plasma nitrite (NO2-). In thrombotic stroke, neither a pharmacological inhibitor of GSNOR (GRI) nor RIC therapy alone was protective in diabetic mice. However, prior treatment with GRI followed by RIC enhanced the CBF and improved recovery. In a reperfused stroke model, the GRI-RIC combination therapy in diabetic mice augmented PbtO2, a translatory signature of successful microvascular reflow. In addition, RIC therapy unexpectedly increased the inflammatory markers at 6 h post-stroke in diabetic stroke that were downregulated in combination with GRI while improving the outcomes. Thus, we conclude that preexisting NOS3 dysfunctions due to comorbidities may neutralize the benefits of RIC in stroke, which can be turned protective in combination with GRI. Our findings may support the future clinical trial of RIC in comorbid stroke. Further studies are warranted to test and develop SNO reservoirs as the blood-associated biomarker to monitor the response and efficacy of RIC therapy in stroke.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    光动力疗法(PDT)是一种基于三个元素同时作用的治疗方式:光敏剂,光和氧气该三联体产生可以减少肿瘤质量的单线态氧和活性氧。PDT也能刺激iNOS,产生一氧化氮(NO)的酶。已经在若干研究中研究了NO在PDT处理的癌细胞中的作用。他们表明低iNOS/NO水平刺激促进肿瘤存活的信号通路,而高iNOS/NO水平阻止肿瘤生长。越来越多的证据表明ROS/RNS控制PDT处理的肿瘤细胞(所谓的旁观者细胞)附近细胞的增殖和迁移。在这项工作中,我们解决了如何不的问题,它是由弱PDT产生的,影响旁观者细胞。我们使用条件培养基:将含有由细胞产生的应激源的PDT处理的肿瘤细胞的培养基添加到模拟邻近旁观者细胞的未处理的细胞中,以研究条件培养基是否影响细胞增殖。我们发现,前列腺癌细胞中低水平的NO以取决于其恶性程度的方式影响旁观者肿瘤细胞。
    Photodynamic therapy (PDT) is a therapeutic modality based on the simultaneous action of three elements: photosensitizer, light and oxygen. This triad generates singlet oxygen and reactive oxygen species that can reduce the mass of a tumor. PDT is also able to stimulate iNOS, the enzyme that generates nitric oxide (NO). The role of NO in PDT-treated cancer cells has been investigated in several studies. They showed that low iNOS/NO levels stimulate signaling pathways that promote tumor survival, while high iNOS/NO levels arrest tumor growth. There is increasing evidence that ROS/RNS control both proliferation and migration of cells in the vicinity of PDT-treated tumor cells (so-called bystander cells). In this work, we addressed the question of how NO, which is generated by weak PDT, affects bystander cells. We used a conditioned medium: medium of PDT-treated tumor cells containing the stressors produced by the cells was added to untreated cells mimicking the neighboring bystander cells to investigate whether the conditioned medium affects cell proliferation. We found that low-level NO in prostate cancer cells affects the bystander tumor cells in a manner that depends on their malignancy grade.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号