GRK

GRK
  • 文章类型: Journal Article
    抑制素通过介导G蛋白脱敏和受体内化是G蛋白偶联受体(GPCR)的关键负调节因子。抑制素还可以通过支架下游信号传导效应子进行激活来促进信号转导。GPCR激酶(GRK)酶磷酸化细胞内C末端结构域,或GPCRs的胞内环区域以促进抑制蛋白相互作用。有七种不同的GRK亚型,它可以在一种磷酸化条形码中独特地磷酸化C末端尾部,\'可能不同地促进抑制素易位和抑制素依赖性信号传导。可以利用这种贡献来开发arrestin偏置的配体。这里,我们研究了不同GRK亚型对一系列配体促进arrestin-2和arrestin-3向1型大麻素受体(CB1)易位的能力的影响.我们发现,大多数GRK亚型(包括视觉GRK1)可以增强arrestin-2和-3向CB1的易位,并且GRK依赖性的arrestin-2和arrestin-3易位变化在大多数测试的激动剂中(广泛)共享。GRK2/3通常比其他GRK亚型更增强抑制蛋白易位,配体之间有一些小的差异。我们还探索了G蛋白活性与GRK2/3依赖性抑制蛋白易位之间的相互作用,强调高效G蛋白激动剂会引起GRK2/3依赖性抑制蛋白易位。这项研究支持以下假设:CB1的arrestin偏向配体必须接合GRK5/6而不是GRK2/3,并且G蛋白偏向配体必须具有固有的低功效。
    Arrestins are key negative regulators of G Protein-Coupled Receptors (GPCRs) through mediation of G protein desensitisation and receptor internalisation. Arrestins can also contribute to signal transduction by scaffolding downstream signalling effectors for activation. GPCR kinase (GRK) enzymes phosphorylate the intracellular C-terminal domain, or intracellular loop regions of GPCRs to promote arrestin interaction. There are seven different GRK subtypes, which may uniquely phosphorylate the C-terminal tail in a type of \'phosphorylation barcode,\' potentially differentially contributing to arrestin translocation and arrestin-dependent signalling. Such contributions may be exploited to develop arrestin-biased ligands. Here, we examine the effect of different GRK subtypes on the ability to promote translocation of arrestin-2 and arrestin-3 to the cannabinoid CB1 receptor (CB1) with a range of ligands. We find that most GRK subtypes (including visual GRK1) can enhance arrestin-2 and -3 translocation to CB1, and that GRK-dependent changes in arrestin-2 and arrestin-3 translocation were broadly shared for most agonists tested. GRK2/3 generally enhanced arrestin translocation more than the other GRK subtypes, with some small differences between ligands. We also explore the interplay between G protein activity and GRK2/3-dependent arrestin translocation, highlighting that high-efficacy G protein agonists will cause GRK2/3 dependent arrestin translocation. This study supports the hypothesis that arrestin-biased ligands for CB1 must engage GRK5/6 rather than GRK2/3, and G protein-biased ligands must have inherently low efficacy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    体液免疫反应的有效诱导取决于淋巴器官内B细胞的协调迁移,由G蛋白偶联受体(GPCRs)控制,以趋化因子为代表。配体结合后,GPCRs在受体C末端的不同位点被不同的GPCR激酶(GRKs)磷酸化。这决定了β-抑制蛋白介导的信号传导的功能结果,从受体失活到效应分子活化。然而,对单个GRKs选择性靶向GPCRs的分子机制了解甚少.我们最近的研究表明,由含有铜代谢的MURR1结构域(COMMD)3和8(COMMD3/8复合物)组成的蛋白质复合物充当衔接子,将特定的GRK募集到化学引诱物受体,并在控制体液免疫应答期间的B细胞迁移中起重要作用。在这次审查中,我们总结了目前在体液免疫背景下对化学引诱物受体信号传导的理解,并讨论了COMMD3/8复合物作为自身免疫性疾病治疗靶点的潜力.
    Efficient induction of humoral immune responses depends on the orchestrated migration of B cells within lymphoid organs, which is governed by G protein-coupled receptors (GPCRs) responding to chemoattractants, represented by chemokines. After ligand binding, GPCRs are phosphorylated by different GPCR kinases (GRKs) at distinct sites on the receptor C termini, which dictates functional outcomes of β-arrestin-mediated signaling, ranging from receptor inactivation to effector molecule activation. However, the molecular mechanisms by which individual GRKs are selectively targeted to GPCRs have been poorly understood. Our recent study revealed that a protein complex consisting of copper metabolism MURR1 domain-containing (COMMD) 3 and 8 (the COMMD3/8 complex) functions as an adaptor that recruits a specific GRK to chemoattractant receptors and plays an important role in the control of B-cell migration during humoral immune responses. In this review, we summarize the current understanding of chemoattractant receptor signaling in the context of humoral immunity and discuss the potential of the COMMD3/8 complex as a therapeutic target for autoimmune diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    D2多巴胺受体(D2R)通过G蛋白和β-arrestin信号调节重要的生理过程,如运动,奖励电路,情感,和认知。β-抑制蛋白被认为在磷酸化的C末端尾部或胞内环与G蛋白偶联受体(GPCR)相互作用。GPCR激酶(GRKs)是GPCR磷酸化的主要驱动因素,对于许多受体来说,受体磷酸化对于β抑制蛋白募集是必不可少的.然而,GRK介导的受体磷酸化不是β-抑制蛋白募集到D2R所必需的,GRKs在D2R-β-抑制蛋白相互作用中的作用仍未被探索。在这项研究中,我们使用CRISPR-Cas9技术工程化的GRK敲除细胞来确定D2R的β-抑制蛋白募集是GRK依赖性的程度。遗传消除一切GRK表达降低,但并没有消除,激动剂刺激的β-抑制蛋白募集到D2R或其随后的内在化。然而,在细胞中重新引入各种GRK同工型后,这些过程得以挽救,GRK2/3也增强了多巴胺的效力。Further,用化合物101治疗,GRK2/3亚型的药理学抑制剂,减少β-抑制蛋白募集和受体内化,强调了GRK亚家族对D2R-β-抑制蛋白相互作用的重要性。使用磷酸化缺陷型D2R突变体概括了这些结果,强调GRKs可以独立于受体磷酸化而增强β-抑制蛋白募集和激活。
    The D2 dopamine receptor (D2R) signals through both G proteins and β-arrestins to regulate important physiological processes, such as movement, reward circuitry, emotion, and cognition. β-arrestins are believed to interact with G protein-coupled receptors (GPCRs) at the phosphorylated C-terminal tail or intracellular loops. GPCR kinases (GRKs) are the primary drivers of GPCR phosphorylation, and for many receptors, receptor phosphorylation is indispensable for β-arrestin recruitment. However, GRK-mediated receptor phosphorylation is not required for β-arrestin recruitment to the D2R, and the role of GRKs in D2R-β-arrestin interactions remains largely unexplored. In this study, we used GRK knockout cells engineered using CRISPR-Cas9 technology to determine the extent to which β-arrestin recruitment to the D2R is GRK-dependent. Genetic elimination of all GRK expression decreased, but did not eliminate, agonist-stimulated β-arrestin recruitment to the D2R or its subsequent internalization. However, these processes were rescued upon the re-introduction of various GRK isoforms in the cells with GRK2/3 also enhancing dopamine potency. Further, treatment with compound 101, a pharmacological inhibitor of GRK2/3 isoforms, decreased β-arrestin recruitment and receptor internalization, highlighting the importance of this GRK subfamily for D2R-β-arrestin interactions. These results were recapitulated using a phosphorylation-deficient D2R mutant, emphasizing that GRKs can enhance β-arrestin recruitment and activation independently of receptor phosphorylation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    G蛋白偶联受体(GPCRs)利用复杂的细胞系统对不同的配体浓度作出反应。通过采取BLT1,白三烯B4(LTB4)的GPCR,作为一个模型,我们先前的工作阐明了该系统通过调节两个特定残基上的磷酸化状态起作用:Thr308和Ser310.Ser310磷酸化发生在比Thr308更低的LTB4浓度,导致配体亲和力从高到低状态的转变。然而,BLT1磷酸化在信号转导过程中的意义或潜在机制仍不清楚.这里,我们确定了β-抑制蛋白的连续BLT1参与构象以及随后的信号转导改变。用LTB4刺激高亲和力BLT1通过ERK1/2-GRK途径诱导Ser310磷酸化,导致β-抑制蛋白结合的低亲和力状态。此配置,被称为“低LTB4诱导的复合物,“需要指环区域和β-抑制素的磷酸肌醇结合基序与BLT1相互作用并使ERK1/2信号失活。在高LTB4浓度下,低亲和力BLT1再次与配体结合,并触发低LTB4诱导的复合物生成为称为“高LTB4诱导的复合物”的不同形式。这种变化是由PKC的308-磷酸化依赖性基础磷酸化推动的。在高LTB4诱导的复合物中,β-抑制蛋白适应涉及与低亲和力BLT1的额外N结构域相互作用的独特构型并刺激PI3K/AKT途径。我们建议BLT1的逐步磷酸化定义了复杂组装的形成,其中β-抑制素执行不同的功能。
    G protein-coupled receptors (GPCRs) utilize complex cellular systems to respond to diverse ligand concentrations. By taking BLT1, a GPCR for leukotriene B4 (LTB4 ), as a model, our previous work elucidated that this system functions through the modulation of phosphorylation status on two specific residues: Thr308 and Ser310 . Ser310 phosphorylation occurs at a lower LTB4 concentration than Thr308 , leading to a shift in ligand affinity from a high-to-low state. However, the implications of BLT1 phosphorylation in signal transduction processes or the underlying mechanisms have remained unclear. Here, we identify the sequential BLT1-engaged conformations of β-arrestin and subsequent alterations in signal transduction. Stimulation of the high-affinity BLT1 with LTB4 induces phosphorylation at Ser310 via the ERK1/2-GRK pathway, resulting in a β-arrestin-bound low-affinity state. This configuration, referred to as the \"low-LTB4 -induced complex,\" necessitates the finger loop region and the phosphoinositide-binding motif of β-arrestins to interact with BLT1 and deactivates the ERK1/2 signaling. Under high LTB4 concentrations, the low-affinity BLT1 again binds to the ligand and triggers the generation of the low-LTB4 -induced complex into a different form termed \"high-LTB4 -induced complex.\" This change is propelled by The308 -phosphorylation-dependent basal phosphorylation by PKCs. Within the high-LTB4 -induced complex, β-arrestin adapts a unique configuration that involves additional N domain interaction to the low-affinity BLT1 and stimulates the PI3K/AKT pathway. We propose that the stepwise phosphorylation of BLT1 defines the formation of complex assemblies, wherein β-arrestins perform distinct functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    简介:内皮功能障碍损害其保护作用,促进炎症和血管疾病的进展。活化蛋白C(APC)引发内皮细胞保护反应,包括屏障稳定,通过激活G蛋白偶联受体(GPCR)蛋白酶激活受体1(PAR1)的抗炎和抗凋亡反应,是一种有前途的治疗方法。尽管最近在开发具有临床潜力的新活化蛋白C变体方面取得了进展,APC/PAR1促进不同细胞保护反应的机制目前尚不清楚,对于推进活化蛋白C和作为未来治疗药物的新靶点具有重要意义.在这里,我们研究了APC/PAR1减弱细胞因子诱导的促炎血管细胞粘附分子(VCAM-1)表达的机制,内皮炎症反应的关键介质。方法:定量多重质谱分析活化蛋白C处理的内皮细胞,内皮细胞转录组学数据库(EndoDB)在线存储库查询,蛋白质表达的生化测量,定量实时聚合酶链反应(RT-qPCR)测量mRNA转录物的丰度,人培养内皮细胞的药理学抑制剂和siRNA转染。结果:在这里,我们报道了活化蛋白C调节肿瘤坏死因子(TNF)-α信号通路成分的磷酸化,并减弱TNF-α诱导的VCAM-1表达,而与mRNA稳定性无关。出乎意料的是,我们发现G蛋白偶联受体共受体鞘氨醇-1磷酸受体-1(S1PR1)和G蛋白受体激酶-2(GRK2)在介导内皮细胞APC/PAR1抗炎反应中具有关键作用.讨论:这项研究提供了有关通过由特定G蛋白偶联受体共受体和GRK调节的离散β-arrestin-2驱动的信号通路介导不同APC/PAR1细胞保护反应的机制的新知识。
    Introduction: Dysfunction of the endothelium impairs its\' protective role and promotes inflammation and progression of vascular diseases. Activated Protein C (APC) elicits endothelial cytoprotective responses including barrier stabilization, anti-inflammatory and anti-apoptotic responses through the activation of the G protein-coupled receptor (GPCR) protease-activated receptor-1 (PAR1) and is a promising therapeutic. Despite recent advancements in developing new Activated protein C variants with clinical potential, the mechanism by which APC/PAR1 promotes different cytoprotective responses remains unclear and is important to understand to advance Activated protein C and new targets as future therapeutics. Here we examined the mechanisms by which APC/PAR1 attenuates cytokine-induced pro-inflammatory vascular cell adhesion molecule (VCAM-1) expression, a key mediator of endothelial inflammatory responses. Methods: Quantitative multiplexed mass spectrometry analysis of Activated protein C treated endothelial cells, endothelial cell transcriptomics database (EndoDB) online repository queries, biochemical measurements of protein expression, quantitative real-time polymerase chain reaction (RT-qPCR) measurement of mRNA transcript abundance, pharmacological inhibitors and siRNA transfections of human cultured endothelial cells. Results: Here we report that Activated Protein C modulates phosphorylation of tumor necrosis factor (TNF)-α signaling pathway components and attenuates of TNF-α induced VCAM-1 expression independent of mRNA stability. Unexpectedly, we found a critical role for the G protein-coupled receptor co-receptor sphingosine-1 phosphate receptor-1 (S1PR1) and the G protein receptor kinase-2 (GRK2) in mediating APC/PAR1 anti-inflammatory responses in endothelial cells. Discussion: This study provides new knowledge of the mechanisms by which different APC/PAR1 cytoprotective responses are mediated through discrete β-arrestin-2-driven signaling pathways modulated by specific G protein-coupled receptor co-receptors and GRKs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    视网膜棒进化为能够检测单个光子。尽管他们非常敏感,棒在许多日志单位的光强度上运行。感光细胞内部的几个过程使这种令人难以置信的光适应成为可能。这里,我们增加了我们以前开发的,杆光转导的完全空间分辨生物物理模型,在高光照水平下形成杆状反应中起重要作用的一些机制:RGS9在关闭G蛋白转导素方面的功能,和钙依赖性的活化视紫红质的磷酸化率,cGMP与光调节离子通道的结合,和两种膜鸟苷酸环化酶活性。这个模型的一个很好的版本捕捉到了对明亮的反应,WT和突变小鼠杆中的饱和闪烁,用于解释“Pepperberg图”,“该图显示了响应相对于明亮闪光的闪光强度的自然对数饱和的时间。在范围的下端,饱和时间随着闪光强度的自然对数线性增加。关系的斜率(τD)由光传导级联关闭中限速(最慢)步骤的时间常数决定,它是通过转导素水解GTP。我们在数学上表征了X截距(Φo),它是使棒响应饱和的光异构化次数。已经观察到,对于超过几千个光异构化的闪蒸强度,曲线偏离线性。建模表明,对于非常明亮的闪光强度,“向上弯曲”可以通过RGS9复合物的动力学来解释,并进一步预测,由于所有可用的PDE的活化,在闪光强度下会有一个平台,导致超过107个光异构化。该模型准确地描述了由于级联靶向膜鸟苷酸环化酶活性的转基因扰动而导致的突变鼠杆饱和行为的改变,和GRK的表达水平,RGS9和PDE。表达突变光调节通道的杆的实验结果据称缺乏钙调蛋白调节,偏离了模型预测,这表明还有其他因素在起作用。
    Retinal rods evolved to be able to detect single photons. Despite their exquisite sensitivity, rods operate over many log units of light intensity. Several processes inside photoreceptor cells make this incredible light adaptation possible. Here, we added to our previously developed, fully space resolved biophysical model of rod phototransduction, some of the mechanisms that play significant roles in shaping the rod response under high illumination levels: the function of RGS9 in shutting off G protein transducin, and calcium dependences of the phosphorylation rates of activated rhodopsin, of the binding of cGMP to the light-regulated ion channel, and of two membrane guanylate cyclase activities. A well stirred version of this model captured the responses to bright, saturating flashes in WT and mutant mouse rods and was used to explain \"Pepperberg plots,\" that graph the time during which the response is saturated against the natural logarithm of flash strength for bright flashes. At the lower end of the range, saturation time increases linearly with the natural logarithm of flash strength. The slope of the relation (τD) is dictated by the time constant of the rate-limiting (slowest) step in the shutoff of the phototransduction cascade, which is the hydrolysis of GTP by transducin. We characterized mathematically the X-intercept ( Φ o ) which is the number of photoisomerizations that just saturates the rod response. It has been observed that for flash strengths exceeding a few thousand photoisomerizations, the curves depart from linearity. Modeling showed that the \"upward bend\" for very bright flash intensities could be explained by the dynamics of RGS9 complex and further predicted that there would be a plateau at flash strengths giving rise to more than ~107 photoisomerizations due to activation of all available PDE. The model accurately described alterations in saturation behavior of mutant murine rods resulting from transgenic perturbations of the cascade targeting membrane guanylate cyclase activity, and expression levels of GRK, RGS9, and PDE. Experimental results from rods expressing a mutant light-regulated channel purported to lack calmodulin regulation deviated from model predictions, suggesting that there were other factors at play.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    病毒依靠宿主细胞机制来侵入宿主细胞并进行成功的感染。G蛋白偶联受体(GPCR)介导的信号通路是细胞生理过程的主要调节因子,并且是病毒在感染过程中重新连接细胞的有吸引力的靶标。特别是,GPCR相关支架蛋白β-抑制素和GPCR信号传导效应物G蛋白受体激酶(GRKs)已被确定为介导病毒进入和协调信号通路的关键细胞因子,这些信号通路为病毒复制重编程细胞.有趣的是,已鉴定出多种病毒激活和/或需要GPCR介导的感染途径,包括多瘤病毒,黄病毒,流感病毒,和SARS-CoV-2,表明这些病毒可能具有宿主细胞入侵的保守机制。因此,GPCR介导的途径突出了开发广泛抗病毒疗法的有吸引力的目标。
    Viruses rely on host-cell machinery in order to invade host cells and carry out a successful infection. G-protein coupled receptor (GPCR)-mediated signaling pathways are master regulators of cellular physiological processing and are an attractive target for viruses to rewire cells during infection. In particular, the GPCR-associated scaffolding proteins β-arrestins and GPCR signaling effectors G-protein receptor kinases (GRKs) have been identified as key cellular factors that mediate viral entry and orchestrate signaling pathways that reprogram cells for viral replication. Interestingly, a broad range of viruses have been identified to activate and/or require GPCR-mediated pathways for infection, including polyomaviruses, flaviviruses, influenza virus, and SARS-CoV-2, demonstrating that these viruses may have conserved mechanisms of host-cell invasion. Thus, GPCR-mediated pathways highlight an attractive target for the development of broad antiviral therapies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    G蛋白偶联受体激酶(GRKs)通过介导受体脱敏参与趋化因子受体的调节。它们可以被募集到激动剂激活的G蛋白偶联受体(GPCRs)并磷酸化它们的细胞内部分,最终阻断信号传播并经常诱导受体内化。然而,越来越多的证据表明,GRKs还可以控制GPCR调控之外的细胞功能。免疫细胞通常同时表达GRK家族的两到四个成员(GRK2,GRK3,GRK5,GRK6),但是我们对它们在初级免疫细胞中的相互作用的了解非常有限。特别是,我们缺少全面的研究,比较这种GRK相互作用对(a)一种白细胞类型内的多种GPCRs的作用,和(b)几个免疫细胞亚群之间的一个特异性GPCR。为了解决这个问题,我们生成了单个小鼠模型,四种主要免疫细胞类型的组合和完全GRK敲除(中性粒细胞,T细胞,B细胞和树突状细胞),并系统地解决了GPCR控制的细胞迁移和组织定位的功能后果。我们的研究表明,GRKs的组合消耗在白细胞中具有多效性和细胞类型特异性作用,其中许多是无法预测的。缺乏所有四个GRK家族成员的嗜中性粒细胞对广泛的GPCR配体显示出增加的趋化迁移反应。而其他免疫细胞类型的组合GRK消耗导致促进和抗迁移反应。GRK2和GRK6在T细胞和B细胞中的联合消耗显示出不同的功能结果(a)不同细胞类型中的一种GPCR类型,和(b)一种细胞类型中的不同GPCR。这些GPCR型和细胞型特异性效应反映在体外淋巴细胞趋化性改变和体内定位中。最后,我们提供的证据表明,完全GRK缺乏会损害树突状细胞的体内平衡,这出乎意料地是由于体外和体内的树突状细胞分化和成熟缺陷造成的。一起,我们的发现证明了免疫细胞中GRK功能的复杂性,这超出了特定白细胞类型的GPCR脱敏。此外,他们强调需要研究原代免疫细胞中的GRK功能,以解决它们在每个白细胞亚群中的特定作用.
    G-protein coupled receptor kinases (GRKs) participate in the regulation of chemokine receptors by mediating receptor desensitization. They can be recruited to agonist-activated G-protein coupled receptors (GPCRs) and phosphorylate their intracellular parts, which eventually blocks signal propagation and often induces receptor internalization. However, there is growing evidence that GRKs can also control cellular functions beyond GPCR regulation. Immune cells commonly express two to four members of the GRK family (GRK2, GRK3, GRK5, GRK6) simultaneously, but we have very limited knowledge about their interplay in primary immune cells. In particular, we are missing comprehensive studies comparing the role of this GRK interplay for (a) multiple GPCRs within one leukocyte type, and (b) one specific GPCR between several immune cell subsets. To address this issue, we generated mouse models of single, combinatorial and complete GRK knockouts in four primary immune cell types (neutrophils, T cells, B cells and dendritic cells) and systematically addressed the functional consequences on GPCR-controlled cell migration and tissue localization. Our study shows that combinatorial depletions of GRKs have pleiotropic and cell-type specific effects in leukocytes, many of which could not be predicted. Neutrophils lacking all four GRK family members show increased chemotactic migration responses to a wide range of GPCR ligands, whereas combinatorial GRK depletions in other immune cell types lead to pro- and anti-migratory responses. Combined depletion of GRK2 and GRK6 in T cells and B cells shows distinct functional outcomes for (a) one GPCR type in different cell types, and (b) different GPCRs in one cell type. These GPCR-type and cell-type specific effects reflect in altered lymphocyte chemotaxis in vitro and localization in vivo. Lastly, we provide evidence that complete GRK deficiency impairs dendritic cell homeostasis, which unexpectedly results from defective dendritic cell differentiation and maturation in vitro and in vivo. Together, our findings demonstrate the complexity of GRK functions in immune cells, which go beyond GPCR desensitization in specific leukocyte types. Furthermore, they highlight the need for studying GRK functions in primary immune cells to address their specific roles in each leukocyte subset.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    G蛋白偶联受体(GPCR)激酶(GRKs)和抑制素介导GPCR脱敏,内化,和信号。预测GPCR磷酸化的空间模式会触发这些离散的GRK和抑制蛋白介导的功能。这里,我们提供的证据表明,远端羧基末端尾(C-tail),但不是近端,趋化因子受体CXCR4的磷酸化指定了βarrestin1(βarr1)依赖性信号传导。我们通过对GRK2/3介导的趋化因子受体CXCR4磷酸化的药理学抑制,以及定点诱变和生物发光共振能量转移方法,不是近端,C尾磷酸化位点是将衔接蛋白STAM1(信号转导衔接分子)募集到βarr1和粘着斑激酶磷酸化而不是细胞外信号调节激酶1/2磷酸化所必需的。此外,我们表明,具有类似位置的C尾磷酸残基的GPCRs也能够招募STAM1到βarr1。然而,尽管对于某些GPCRs来说是必要的,我们发现远端C尾位点可能不足以指定其他GPCRs的STAM1募集至βarr1.总之,这项研究提供了证据,表明远端C尾磷酸化位点指定了CXCR4和其他GPCRs介导的GRK-β抑制蛋白信号传导.
    G protein-coupled receptor (GPCR) kinases (GRKs) and arrestins mediate GPCR desensitization, internalization, and signaling. The spatial pattern of GPCR phosphorylation is predicted to trigger these discrete GRK and arrestin-mediated functions. Here, we provide evidence that distal carboxyl-terminal tail (C-tail), but not proximal, phosphorylation of the chemokine receptor CXCR4 specifies βarrestin1 (βarr1)-dependent signaling. We demonstrate by pharmacologic inhibition of GRK2/3-mediated phosphorylation of the chemokine receptor CXCR4 coupled with site-directed mutagenesis and bioluminescence resonance energy transfer approaches that distal, not proximal, C-tail phosphorylation sites are required for recruitment of the adaptor protein STAM1 (signal-transducing adaptor molecule) to βarr1 and focal adhesion kinase phosphorylation but not extracellular signal-regulated kinase 1/2 phosphorylation. In addition, we show that GPCRs that have similarly positioned C-tail phosphoresidues are also able to recruit STAM1 to βarr1. However, although necessary for some GPCRs, we found that distal C-tail sites might not be sufficient to specify recruitment of STAM1 to βarr1 for other GPCRs. In conclusion, this study provides evidence that distal C-tail phosphorylation sites specify GRK-βarrestin-mediated signaling by CXCR4 and other GPCRs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    G蛋白偶联受体(GPCR)激酶(GRKs)和抑制素与激动剂结合的GPCRs相互作用以促进受体脱敏和下调。它们还触发不同于异源三聚体G蛋白的信号级联。偏向于异源三聚体G蛋白或GRK/抑制蛋白信号传导的GPCRs的有偏见的激动剂具有深远的药理学意义,因为它们可以带来具有大大降低的副作用的新一代药物。可能发生偏向激动的一种机制是通过稳定优先结合GRK和/或抑制素的受体构象。在这次审查中,我们通过比较与异源三聚体G蛋白结合的GPCRs的结构与与抑制素和GRKs复合的相同GPCRs的结构来探索这一想法。arrestin和GRK复合物都表现出高度的构象异质性,这可能是由于它们不寻常的适应和结合数百种不同的GPCRs的能力。这种动态行为,以及稳定GPCR复合物进行生物物理分析所需的实验策略,混淆了这些比较,但是一些可能的分子机制开始出现偏差。我们还研究了最近的结构是否以及如何促进我们对抑制蛋白如何通过GRKs解析GPCRs的胞内环和尾部中安装的“磷酸化条形码”的理解。在未来,结构分析的arrestins与完整的受体,具有明确定义的天然磷酸化条形码,例如由GRK的两个非视觉子家族安装的,会特别有启发性。
    G protein-coupled receptor (GPCR) kinases (GRKs) and arrestins interact with agonist-bound GPCRs to promote receptor desensitization and downregulation. They also trigger signaling cascades distinct from those of heterotrimeric G proteins. Biased agonists for GPCRs that favor either heterotrimeric G protein or GRK/arrestin signaling are of profound pharmacological interest because they could usher in a new generation of drugs with greatly reduced side effects. One mechanism by which biased agonism might occur is by stabilizing receptor conformations that preferentially bind to GRKs and/or arrestins. In this review, we explore this idea by comparing structures of GPCRs bound to heterotrimeric G proteins with those of the same GPCRs in complex with arrestins and GRKs. The arrestin and GRK complexes all exhibit high conformational heterogeneity, which is likely a consequence of their unusual ability to adapt and bind to hundreds of different GPCRs. This dynamic behavior, along with the experimental tactics required to stabilize GPCR complexes for biophysical analysis, confounds these comparisons, but some possible molecular mechanisms of bias are beginning to emerge. We also examine if and how the recent structures advance our understanding of how arrestins parse the \"phosphorylation barcodes\" installed in the intracellular loops and tails of GPCRs by GRKs. In the future, structural analyses of arrestins in complex with intact receptors that have well-defined native phosphorylation barcodes, such as those installed by the two nonvisual subfamilies of GRKs, will be particularly illuminating.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号