GRA3

  • 文章类型: Journal Article
    弓形虫病是由弓形虫引起的一种重要的人畜共患疾病,可感染全世界几乎所有的温血动物,包括人类。弓形虫感染的高患病率及其对人和动物造成严重危害的能力,尤其是免疫缺陷个体,让它成为一个关键的公共卫生问题。需要具有高灵敏度的精确诊断工具来控制弓形虫感染。在目前的研究中,我们比较了重组SAG2,GRA6和GRA7在ELISA中对猫弓形虫感染的血清学诊断的性能。我们进一步研究了重组致密颗粒蛋白3(rGRA3)的抗原性,rGRA5,rGRA8和rSRS29A在植物中表达,用于检测弓形虫感染的猫中抗体的无细胞表达系统。总之,我们的数据表明GRA7对猫弓形虫感染的血清诊断比其他两种抗原更敏感,在无细胞系统中表达的GRA3也是用于检测猫弓形虫感染的血清学测试中的引发抗原。
    Toxoplasmosis is an important zoonotic disease caused by Toxoplasma gondii that can infect almost all warm-blooded animals worldwide, including humans. The high prevalence of T. gondii infection and its ability to cause serious harm to humans and animals, especially immunodeficient individuals, make it a key public health issue. Accurate diagnostic tools with high sensitivity are needed for controlling T. gondii infection. In the current study, we compared the performance of recombinant SAG2, GRA6, and GRA7 in ELISA for the serological diagnosis of T. gondii infection in cats. We further investigated the antigenicity of recombinant dense granule protein 3 (rGRA3), rGRA5, rGRA8, and rSRS29A expressed in a plant-based, cell-free expression system for detecting antibodies in T. gondii-infected cats. In summary, our data suggest that GRA7 is more sensitive than the other two antigens for the serodiagnosis of T. gondii infection in cats, and GRA3 expressed in the cell-free system is also a priming antigen in serological tests for detecting T. gondii infection in cats.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Toxoplasma gondii dense granule protein GRA3 has been shown to promote Toxoplasma gondii transmission and proliferation by interacting with the host cell endoplasmic reticulum (ER) through calcium-regulated cyclophilin ligands (CAMLG). Although many studies have focused on the interaction between the host cell endoplasmic reticulum and GRA3, no polyclonal antibodies (PcAbs) against GRA3 have been reported to date. According to the antigenicity prediction and exposure site analysis, three antigen peptide sequences were selected to prepare polyclonal antibodies targeting GRA3. Peptide scans revealed that the major antigenic epitope sequences were 125ELYDRTDRPGLK136, 202FFRRRPKDGGAG213, and 68NEAGESYSSATSG80, respectively. The GRA3 PcAb specifically recognized the GRA3 of T. gondii type Ⅱ ME49. The development of PcAbs against GRA3 is expected to elucidate the molecular mechanisms by which GRA3 regulates host cell function and contribute to the development of diagnostic and therapeutic strategies for toxoplasmosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:弓形虫是一种嗜神经的单细胞寄生虫,可以感染哺乳动物,包括人类。中枢神经系统感染弓形虫感染可导致弓形虫脑炎。弓形虫感染可引起内质网(ER)应激和未折叠蛋白反应(UPR)激活,最终导致宿主细胞凋亡。致密颗粒蛋白GRA3已被确定为有助于弓形虫毒力的分泌蛋白之一;然而,机制仍然是神秘的。
    方法:GRA3基因在RH中的表达,使用定量实时聚合酶链反应(qRT-PCR)测定ME49、Wh3和Wh6菌株。pEGFP-GRA3Wh6是通过将中国1Wh6GRA3(GRA3Wh6)cDNA插入编码增强GFP的质粒中而构建的。用pEGFP或pEGFP-GRA3Wh6(GRA3Wh6)转染小鼠神经2a(N2a)细胞并孵育24-36小时。使用流式细胞术和免疫印迹测定N2a细胞凋亡和ER应激相关蛋白。此外,在GRA3Wh6转染之前,用GSK2656157(PERK抑制剂)和Z-ATAD-FMK(caspase-12抑制剂)预处理N2a细胞,并研究了抑制剂对GRA3Wh6诱导的ER应激和细胞凋亡的影响。
    结果:GRA3基因在II型ME49和中国1型Wh6毒力较弱的菌株中的表达高于I型RH菌株和中国1型Wh3菌株的毒力菌株。转染GRA3Wh6质粒可诱导神经元凋亡,并增加GRP78,p-PERK的表达,与对照载体相比,裂解的caspase-12,裂解的caspase-3和CHOP。用GSK2656157和Z-ATAD-FMK预处理可降低N2a细胞的凋亡,同样,ER应激和凋亡相关蛋白水平显著降低。
    结论:GRA3通过内质网应激信号通路诱导神经细胞凋亡,可能在弓形虫脑炎中发挥作用。
    BACKGROUND: Toxoplasma gondii is a neurotropic single-celled parasite that can infect mammals, including humans. Central nervous system infection with T. gondii infection can lead to Toxoplasma encephalitis. Toxoplasma infection can cause endoplasmic reticulum (ER) stress and unfolded protein response (UPR) activation, which ultimately can lead to apoptosis of host cells. The dense granule protein GRA3 has been identified as one of the secretory proteins that contribute to the virulence of T. gondii; however, the mechanism remains enigmatic.
    METHODS: The expression of the GRA3 gene in RH, ME49, Wh3, and Wh6 strains was determined using quantitative real-time polymerase chain reaction (qRT-PCR). pEGFP-GRA3Wh6 was constructed by inserting Chinese 1 Wh6 GRA3 (GRA3Wh6) cDNA into a plasmid encoding the enhanced GFP. Mouse neuro2a (N2a) cells were transfected with either pEGFP or pEGFP-GRA3Wh6 (GRA3Wh6) and incubated for 24-36 h. N2a cell apoptosis and ER stress-associated proteins were determined using flow cytometry and immunoblotting. Furthermore, N2a cells were pretreated with GSK2656157 (a PERK inhibitor) and Z-ATAD-FMK (a caspase-12 inhibitor) before GRA3Wh6 transfection, and the effect of the inhibitors on GRA3Wh6-induced ER stress and apoptosis were investigated.
    RESULTS: GRA3 gene expression was higher in the less virulent strains of type II ME49 and type Chinese 1 Wh6 strains compared with the virulent strains of type I RH strain and type Chinese 1 Wh3 strain. Transfection with GRA3Wh6 plasmid induced neuronal apoptosis and increased the expression of GRP78, p-PERK, cleaved caspase-12, cleaved caspase-3, and CHOP compared with the control vector. Pretreatment with GSK2656157 and Z-ATAD-FMK decreased apoptosis in N2a cells, and similarly, ER stress- and apoptosis-associated protein levels were significantly decreased.
    CONCLUSIONS: GRA3 induces neural cell apoptosis via the ER stress signaling pathway, which could play a role in toxoplasmic encephalitis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Recombinant antigenic proteins of Toxoplasma gondii are alternative source of antigens which are easily obtainable for serodiagnosis of toxoplasmosis. In this study, highly antigenic secretory organellar proteins, dense granular GRA2 and GRA3, rhoptrial ROP2, and micronemal MIC2, were analyzed by bioinformatics approach to express as water-soluble forms of antigenic domains. The transmembrane region and disorder tendency of 4 secretory proteins were predicted to clone the genes into pGEX-4T-1 vector. Recombinant plasmids were transformed into BL21 (DE3) pLysS E. coli, and GST fusion proteins were expressed with IPTG. As a result, GST fusion proteins with GRA225-105, GRA339-138, ROP2324-561, and MIC21-284 domains had respectively higher value of IgG avidity. The rGST-GRA225-105 and rGST-GRA339-138 were soluble, while rGST-ROP2324-561 and rGST-MIC21-284 were not. GRA231-71, intrinsically unstructured domain (IUD) of GRA2, was used as a linker to enhance the solubility. The rGST-GRA231-71-ROP2324-561, a chimeric protein, appeared to be soluble. Moreover, rGST-GRA231-71-MIC21-284 was also soluble and had higher IgG avidity comparing to rGST-MIC21-284. These 4 highly expressed and water-soluble recombinant antigenic proteins may be promising candidates to improve the serodiagnosis of toxoplasmosis in addition to the major surface antigen of SAG1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    A monoclonal antibody against Toxoplasma gondii of Tg556 clone (Tg556) blotted a 29 kDa protein, which was localized in the dense granules of tachyzoites and secreted into the parasitophorous vacuolar membrane (PVM) after infection to host cells. A cDNA fragment encoding the protein was obtained by screening a T. gondii cDNA expression library with Tg556, and the full-length was completed by 5\'-RACE of 2,086 bp containing an open reading frame (ORF) of 669 bp. The ORF encoded a polypeptide of 222 amino acids homologous to the revised GRA3 but not to the first reported one. The polypeptide has 3 hydrophobic moieties of an N-terminal stop transfer sequence and 2 transmembrane domains (TMD) in posterior half of the sequence, a cytoplasmic localization motif after the second TMD and an endoplasmic reticulum (ER) retrival motif in the C-terminal end, which suggests GRA3 as a type III transmembrane protein. With the ORF of GRA3, yeast two-hybrid assay was performed in HeLa cDNA expression library, which resulted in the interaction of GRA3 with calcium modulating ligand (CAMLG), a type II transmembrane protein of ER. The specific binding of GRA3 and CAMLG was confirmed by glutathione S-transferase (GST) pull-down and immunoprecipitation assays. The localities of fluorescence transfectionally expressed from GRA3 and CAMLG plasmids were overlapped completely in HeLa cell cytoplasm. In immunofluorescence assay, GRA3 and CAMLG were shown to be co-localized in the PVM of host cells. Structural binding of PVM-inserted GRA3 to CAMLG of ER suggested the receptor-ligand of ER recruitment to PVM during the parasitism of T. gondii.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号