Excitation Contraction Coupling

励磁收缩联轴器
  • 文章类型: Journal Article
    本章将描述心脏肌肉细胞收缩装置的基本结构和功能特征,即,心肌细胞和平滑肌细胞。心肌细胞形成心脏的收缩心肌,而平滑肌细胞形成收缩的冠状血管。两种肌肉类型都具有不同的特性,并且将考虑其细胞外观(砖状横纹与纺锤状光滑),收缩蛋白的排列(肌节组织与非肌节组织),钙激活机制(细丝与粗丝调节),收缩特征(快速和阶段性与缓慢和补品),能量代谢(高氧与低氧需求),分子马达(具有高二磷酸腺苷[ADP]释放速率的II型肌球蛋白同工酶与具有低ADP释放速率的肌球蛋白同工酶),化学机械能量转换(高三磷酸腺苷[ATP]消耗和短占空比与低ATP消耗和肌球蛋白II交叉桥[XBs]的高占空比),和兴奋-收缩耦合(钙诱导的钙释放与药物机械耦合)。部分工作已经发表(神经科学-从分子到行为”,Chap.22,Galizia和Lledoeds2013,Springer-Verlag;获得SpringerScience+BusinessMedia的善意许可)。
    This chapter will describe basic structural and functional features of the contractile apparatus of muscle cells of the heart, namely, cardiomyocytes and smooth muscle cells. Cardiomyocytes form the contractile myocardium of the heart, while smooth muscle cells form the contractile coronary vessels. Both muscle types have distinct properties and will be considered with respect to their cellular appearance (brick-like cross-striated versus spindle-like smooth), arrangement of contractile proteins (sarcomeric versus non-sarcomeric organization), calcium activation mechanisms (thin-filament versus thick-filament regulation), contractile features (fast and phasic versus slow and tonic), energy metabolism (high oxygen versus low oxygen demand), molecular motors (type II myosin isoenzymes with high adenosine diphosphate [ADP]-release rate versus myosin isoenzymes with low ADP-release rates), chemomechanical energy conversion (high adenosine triphosphate [ATP] consumption and short duty ratio versus low ATP consumption and high duty ratio of myosin II cross-bridges [XBs]), and excitation-contraction coupling (calcium-induced calcium release versus pharmacomechanical coupling). Part of the work has been published (Neuroscience - From Molecules to Behavior\", Chap. 22, Galizia and Lledo eds 2013, Springer-Verlag; with kind permission from Springer Science + Business Media).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人类的心脏每天跳动约100,000次,对心肌施加大量的能量需求。三磷酸腺苷(ATP)是心肌在每次搏动过程中正常功能的重要能量来源,当它为离子传输提供动力时,细胞内Ca2+处理,和肌动蛋白-肌球蛋白跨桥循环。尽管如此,激发-收缩耦合对肌细胞内ATP浓度([ATP]i)的影响知之甚少。这里,我们使用基因编码的ATP荧光报告基因对心室肌细胞中的[ATP]i进行了实时测量.我们的数据揭示了[ATP]i的快速节拍变化。值得注意的是,舒张压[ATP]i<1mM,比以前估计的低八到十倍。因此,ATP敏感的K(KATP)通道在生理[ATP]i处具有活性。细胞在动作电位期间表现出两种不同类型的ATP波动:[ATP]i的净增加(模式1)或减少(模式2)。模式1[ATP]i增加需要Ca2进入和从肌浆网(SR)释放,并且与线粒体Ca2增加有关。相比之下,线粒体Ca2+伴随模式2[ATP]i减少。线粒体蛋白2的下调降低了[ATP]i波动的幅度,表明SR-线粒体偶联在ATP水平的动态控制中起着至关重要的作用。β-肾上腺素能受体的激活降低[ATP]i,强调了这一信号通路的能量影响。最后,我们的研究表明,跨桥循环是动作电位过程中心室肌细胞中ATP的最大消耗者.这些发现提供了对EC偶联的能量需求的见解,并强调了心肌中ATP浓度的动态性质。
    The heart beats approximately 100,000 times per day in humans, imposing substantial energetic demands on cardiac muscle. Adenosine triphosphate (ATP) is an essential energy source for normal function of cardiac muscle during each beat, as it powers ion transport, intracellular Ca2+ handling, and actin-myosin cross-bridge cycling. Despite this, the impact of excitation-contraction coupling on the intracellular ATP concentration ([ATP]i) in myocytes is poorly understood. Here, we conducted real-time measurements of [ATP]i in ventricular myocytes using a genetically encoded ATP fluorescent reporter. Our data reveal rapid beat-to-beat variations in [ATP]i. Notably, diastolic [ATP]i was <1 mM, which is eightfold to 10-fold lower than previously estimated. Accordingly, ATP-sensitive K+ (KATP) channels were active at physiological [ATP]i. Cells exhibited two distinct types of ATP fluctuations during an action potential: net increases (Mode 1) or decreases (Mode 2) in [ATP]i. Mode 1 [ATP]i increases necessitated Ca2+ entry and release from the sarcoplasmic reticulum (SR) and were associated with increases in mitochondrial Ca2+. By contrast, decreases in mitochondrial Ca2+ accompanied Mode 2 [ATP]i decreases. Down-regulation of the protein mitofusin 2 reduced the magnitude of [ATP]i fluctuations, indicating that SR-mitochondrial coupling plays a crucial role in the dynamic control of ATP levels. Activation of β-adrenergic receptors decreased [ATP]i, underscoring the energetic impact of this signaling pathway. Finally, our work suggests that cross-bridge cycling is the largest consumer of ATP in a ventricular myocyte during an action potential. These findings provide insights into the energetic demands of EC coupling and highlight the dynamic nature of ATP concentrations in cardiac muscle.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:伊布替尼,用于癌症治疗的布鲁顿酪氨酸激酶抑制剂,发挥室性心律失常作用;然而,潜在机制尚不清楚.兴奋-收缩耦合(E-C)障碍对于室性心律失常(VA)的发生至关重要,主要来自右心室流出道(RVOT)。在这项研究中,我们旨在全面调查ibrutinib是否调节RVOT的机电活动,导致心律失常发生,并探索潜在的机制。
    方法:我们利用常规微电极在用依鲁替尼(10、50和100nM)治疗前后同步记录兔RVOT组织制剂中的电和机械反应,并研究其在编程电刺激期间的电相互作用和心律失常发生。荧光比技术用于测量分离的RVOT肌细胞中的细胞内钙浓度。
    结果:依鲁替尼(10-100nM)缩短了动作电位持续时间。100nM的Ibrutinib显着增加了起搏引起的室性心动过速(VT)(从0%到62.5%,n=8,p=0.025)。起搏引起的VT与非VT发作之间的比较表明,VT发作与非VT发作相比,收缩力增加更大(402.1±41.4%vs.232.4±29.2%,p=0.003)。雷诺嗪(10μM,晚期钠电流阻滞剂)预防了依鲁替尼诱导的VA的发生。伊布替尼(100nM)增加了晚期钠电流,减少细胞内钙瞬变,增强RVOT心肌细胞的钙渗漏。
    结论:Ibrutinib由于机电反应失调而增加了RVOT中VAs的风险,可以通过雷诺嗪或阿帕明减毒。
    BACKGROUND: Ibrutinib, a Bruton\'s tyrosine kinase inhibitor used in cancer therapy, exerts ventricular proarrhythmic effects; however, the underlying mechanisms remain unclear. Excitation-contraction coupling (E-C) disorders are pivotal for the genesis of ventricular arrhythmias (VAs), which arise mainly from the right ventricular outflow tract (RVOT). In this study, we aimed to comprehensively investigate whether ibrutinib regulates the electromechanical activities of the RVOT, leading to enhanced arrhythmogenesis, and explore the underlying mechanisms.
    METHODS: We utilized conventional microelectrodes to synchronously record electrical and mechanical responses in rabbit RVOT tissue preparations before and after treatment with ibrutinib (10, 50, and 100 nM) and investigated their electromechanical interactions and arrhythmogenesis during programmed electrical stimulation. The fluorometric ratio technique was used to measure intracellular calcium concentration in isolated RVOT myocytes.
    RESULTS: Ibrutinib (10-100 nM) shortened the action potential duration. Ibrutinib at 100 nM significantly increased pacing-induced ventricular tachycardia (VT) (from 0% to 62.5%, n = 8, p = 0.025). Comparisons between pacing-induced VT and non-VT episodes demonstrated that VT episodes had a greater increase in contractility than that of non-VT episodes (402.1 ± 41.4% vs. 232.4 ± 29.2%, p = 0.003). The pretreatment of ranolazine (10 μM, a late sodium current blocker) prevented the occurrence of ibrutinib-induced VAs. Ibrutinib (100 nM) increased late sodium current, reduced intracellular calcium transients, and enhanced calcium leakage in RVOT myocytes.
    CONCLUSIONS: Ibrutinib increased the risk of VAs in the RVOT due to dysregulated electromechanical responses, which can be attenuated by ranolazine or apamin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:微血管功能障碍(MVD)是接受原位心脏移植(OHT)的患者慢性移植物功能障碍的标志特征,并且是导致移植物长期存活受损的主要原因。这项研究的目的是确定MVD对从OHT患者心室活检中分离的心肌细胞的功能和结构特性的影响。
    方法:我们纳入了14例OHT后患者,移植了8.1年[5.0;15.7年]。平均年龄为49.6±14.3岁;64%为男性。使用基于导丝的冠状动脉血流储备(CFR)/微血管阻力指数(IMR)测量来评估冠状动脉微脉管系统。获得心室心肌活检,并使用酶消化分离心肌细胞。电刺激细胞,并使用共聚焦成像测量亚细胞Ca2+信号传导以及线粒体密度。
    结果:通过IMR测量的MVD在14例患者中有6例存在,平均IMR为53±10。12±2inMVDvs.控件(CTRL),分别。MVD和CTRL之间的CFR没有差异。来自患者子集的孤立的心室心肌细胞在兴奋-收缩耦合过程中的Ca2瞬变显示出不变的幅度。此外,Ca2+释放和Ca2+去除在MVD和CTRL之间没有显著差异。然而,线粒体密度显著增加MVDvs.CTRL(34±1vs.29±2%),指示与MVD相关的亚细胞变化。
    结论:OHT后体内心室微血管功能障碍与体外保留的兴奋-收缩偶联有关,可能是由于线粒体水平的代偿性变化或由于疾病的潜在可逆原因。
    BACKGROUND: Microvascular dysfunction (MVD) is a hallmark feature of chronic graft dysfunction in patients that underwent orthotopic heart transplantation (OHT) and is the main contributor to impaired long-term graft survival. The aim of this study was to determine the effect of MVD on functional and structural properties of cardiomyocytes isolated from ventricular biopsies of OHT patients.
    METHODS: We included 14 patients post-OHT, who had been transplanted for 8.1 years [5.0; 15.7 years]. Mean age was 49.6 ± 14.3 years; 64% were male. Coronary microvasculature was assessed using guidewire-based coronary flow reserve(CFR)/index of microvascular resistance (IMR) measurements. Ventricular myocardial biopsies were obtained and cardiomyocytes were isolated using enzymatic digestion. Cells were electrically stimulated and subcellular Ca2+ signalling as well as mitochondrial density were measured using confocal imaging.
    RESULTS: MVD measured by IMR was present in 6 of 14 patients with a mean IMR of 53±10 vs. 12±2 in MVD vs. controls (CTRL), respectively. CFR did not differ between MVD and CTRL. Ca2+ transients during excitation-contraction coupling in isolated ventricular cardiomyocytes from a subset of patients showed unaltered amplitudes. In addition, Ca2+ release and Ca2+ removal were not significantly different between MVD and CTRL. However, mitochondrial density was significantly increased in MVD vs. CTRL (34±1 vs. 29±2%), indicating subcellular changes associated with MVD.
    CONCLUSIONS: In-vivo ventricular microvascular dysfunction post OHT is associated with preserved excitation-contraction coupling in-vitro, potentially owing to compensatory changes on the mitochondrial level or due to the potentially reversible cause of the disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    电压门控钙通道(VGCC)是可兴奋细胞内钙离子(Ca2)的主要通道。最近的研究强调了VGCC的非离子型功能,揭示它们独立于离子流激活细胞内途径的能力。这种非离子型信号模式在激发-耦合过程中起着关键作用,包括通过激发转录(ET)的基因转录,通过兴奋分泌(ES)的突触传递,和心脏收缩通过兴奋收缩(EC)。然而,值得注意的是,这些激发-耦合过程需要细胞外钙(Ca2+)和Ca2+占据通道离子孔。类似于N-甲基-D-天冬氨酸受体(NMDA)表现出的非离子型信号的“非规范”表征,这需要细胞外Ca2+而没有离子的流入,VGCC激活需要去极化触发的构象变化,同时Ca2结合到开放通道。这里,我们讨论了VGCC对ES的贡献,ET,和EC偶联作为Ca2+结合大分子,其在升高细胞内Ca2+之前将外部刺激转导至细胞内输入。我们强调认识到开放离子孔内的钙离子占有率及其对钙流入之前的激发耦合过程的贡献。VGCC的非离子型活化,由动作电位的上升触发,提供了一个概念框架来阐明突触传递的微秒性质的机制方面,心脏收缩力,以及第一波基因的快速诱导。
    Voltage-gated calcium channels (VGCCs) are the major conduits for calcium ions (Ca2+) within excitable cells. Recent studies have highlighted the non-ionotropic functionality of VGCCs, revealing their capacity to activate intracellular pathways independently of ion flow. This non-ionotropic signaling mode plays a pivotal role in excitation-coupling processes, including gene transcription through excitation-transcription (ET), synaptic transmission via excitation-secretion (ES), and cardiac contraction through excitation-contraction (EC). However, it is noteworthy that these excitation-coupling processes require extracellular calcium (Ca2+) and Ca2+ occupancy of the channel ion pore. Analogous to the \"non-canonical\" characterization of the non-ionotropic signaling exhibited by the N-methyl-D-aspartate receptor (NMDA), which requires extracellular Ca2+ without the influx of ions, VGCC activation requires depolarization-triggered conformational change(s) concomitant with Ca2+ binding to the open channel. Here, we discuss the contributions of VGCCs to ES, ET, and EC coupling as Ca2+ binding macromolecules that transduces external stimuli to intracellular input prior to elevating intracellular Ca2+. We emphasize the recognition of calcium ion occupancy within the open ion-pore and its contribution to the excitation coupling processes that precede the influx of calcium. The non-ionotropic activation of VGCCs, triggered by the upstroke of an action potential, provides a conceptual framework to elucidate the mechanistic aspects underlying the microseconds nature of synaptic transmission, cardiac contractility, and the rapid induction of first-wave genes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    功能失调的Ca2+信号影响心肌收缩和舒张,可能引发心律失常并引起心力衰竭的转录组和蛋白质组修饰。因此,同步实时测量Ca2和力对于研究人衰竭心肌中收缩性和Ca2信号传导与兴奋-收缩耦合(ECC)的变化之间的关系至关重要。这里,我们提出了一种在长期培养的人衰竭心肌切片中同步获取细胞内Ca2和收缩力的方法。使用收缩力和细胞内Ca2的同步时间序列来计算力-钙回路,并分析ECC响应于各种起搏频率的动态变化,暂停后增强,人类衰竭心肌的高机械预紧力和药物干预。我们提供了一种方法,可以同时重复地研究长期培养的心肌中收缩性和Ca2信号的变化,这将允许检测电生理或药物干预对人心肌ECC的影响。
    Dysfunctional Ca2+ signaling affects the myocardial systole and diastole, may trigger arrhythmia and cause transcriptomic and proteomic modifications in heart failure. Thus, synchronous real-time measurement of Ca2+ and force is essential to investigate the relationship between contractility and Ca2+ signaling and the alteration of excitation-contraction coupling (ECC) in human failing myocardium. Here, we present a method for synchronized acquisition of intracellular Ca2+ and contraction force in long-term cultivated slices of human failing myocardium. Synchronous time series of contraction force and intracellular Ca2+ were used to calculate force-calcium loops and to analyze the dynamic alterations of ECC in response to various pacing frequencies, post-pause potentiation, high mechanical preload and pharmacological interventions in human failing myocardium. We provide an approach to simultaneously and repeatedly investigate alterations of contractility and Ca2+ signals in long-term cultured myocardium, which will allow detecting the effects of electrophysiological or pharmacological interventions on human myocardial ECC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    抵抗或逃离威胁的能力依赖于增加心输出量的急性肾上腺素能激增,这取决于心脏收缩力和心率的增加。这种心脏反应取决于β-肾上腺素能引发的小RGKG蛋白Rad介导的对通过Cavβ亚基起作用的电压门控钙通道(CaV)的抑制的逆转。这里,我们研究了Rad如何将磷酸化与增加的Ca2+流入和增加的心脏收缩耦合。我们表明,逆转需要Rad的多态性中Ser272和Ser300的磷酸化,疏水C端结构域(CTD)。Ser25和Ser38在Rad的N-末端结构域(NTD)中单独的磷酸化是无效的。Ser272和Ser300的磷酸化或在CTD中添加四个Asp可减少Rad与带负电荷的缔合,细胞质质膜表面和CaVβ,即使没有CaVα,这里用FRET测量。向Rad的C端添加翻译后的异戊二烯化CAAX基序,将Rad本质上绑在膜上,防止磷酸化和Asp取代的生理和生化效应。因此,拉德从肉瘤中分离出来,因此来自CaVβ,对于Ca2+电流的交感神经上调是足够的。
    The ability to fight or flee from a threat relies on an acute adrenergic surge that augments cardiac output, which is dependent on increased cardiac contractility and heart rate. This cardiac response depends on β-adrenergic-initiated reversal of the small RGK G protein Rad-mediated inhibition of voltage-gated calcium channels (CaV) acting through the Cavβ subunit. Here, we investigate how Rad couples phosphorylation to augmented Ca2+ influx and increased cardiac contraction. We show that reversal required phosphorylation of Ser272 and Ser300 within Rad\'s polybasic, hydrophobic C-terminal domain (CTD). Phosphorylation of Ser25 and Ser38 in Rad\'s N-terminal domain (NTD) alone was ineffective. Phosphorylation of Ser272 and Ser300 or the addition of 4 Asp residues to the CTD reduced Rad\'s association with the negatively charged, cytoplasmic plasmalemmal surface and with CaVβ, even in the absence of CaVα, measured here by FRET. Addition of a posttranslationally prenylated CAAX motif to Rad\'s C-terminus, which constitutively tethers Rad to the membrane, prevented the physiological and biochemical effects of both phosphorylation and Asp substitution. Thus, dissociation of Rad from the sarcolemma, and consequently from CaVβ, is sufficient for sympathetic upregulation of Ca2+ currents.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    除了他们众所周知的经典效果,大麻素CB1和CB2受体在各种病理条件下也参与对心脏的有害和保护作用。虽然内源性大麻素系统在心血管功能方面的潜在治疗应用确实是一个可行的前景,关于CB1,CB2或两种受体的组合是否对心脏功能产生有利影响,文献中存在显著的争论.因此,这项研究的目的是研究CB1+CB2或CB2激动剂对心脏兴奋-收缩(E-C)偶联的影响,利用鱼(亚马逊白云)作为实验模型。CB2激动剂在孤立的心室心肌中引起明显的正性肌力和嗜糖反应,诱导环腺苷3',5'-单磷酸盐(cAMP)生产,并上调关键的Ca2+处理蛋白,例如sarco/内质网Ca2-ATPase(SERCA)和Na/Ca2交换剂(NCX)。我们目前的研究表明,第一次,CB2受体激活诱导的效应提高了Ca2+循环的效率,激励-收缩耦合(E-C耦合),和生理条件下的心脏表现。因此,CB2受体可以被认为是调节心脏收缩功能障碍的潜在治疗靶标。
    In addition to their well-known classical effects, cannabinoid CB1 and CB2 receptors have also been involvement in both deleterious and protective actions on the heart under various pathological conditions. While the potential therapeutic applications of the endocannabinoid system in the context of cardiovascular function are indeed a viable prospect, significant debate exists within the literature regarding whether CB1, CB2, or a combination of both receptors exert a favorable influence on cardiac function. Hence, the aim of this study was to investigate the effects of CB1 + CB2 or CB2 agonists on cardiac excitation-contraction (E-C) coupling, utilizing fish (Brycon amazonicus) as an experimental model. The CB2 agonist elicited marked positive inotropic and lusitropic responses in isolated ventricular myocardium, induced cyclic adenosine 3\',5\'-monophosphate (cAMP) production, and upregulated critical Ca2+ handling proteins, such as sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and Na+/Ca2+ exchanger (NCX). Our current study demonstrated, for the first time, that CB2 receptor activation-induced effects improved the efficiency of Ca2+ cycling, excitation-contraction coupling (E-C coupling), and cardiac performance in under physiological conditions. Hence, CB2 receptors could be considered a potential therapeutic target for modulating cardiac contractile dysfunctions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在心肌中,IP3诱导的肌浆网(SR)释放Ca2(IP3ICR)的生理功能仍然是深入研究的主题。IP3ICR的作用可能在于调节Ca2依赖性心律失常的发生。在这里,我们观察到由心室肌细胞中Ca2诱导的Ca2释放(CICR)驱动的自发细胞内Ca2波(SCaW)的倾向,这与器官水平的心律失常性有关。我们在IP3R过表达模型中观察到IP3ICR对SCaW生成的双重作用模式。该模型显示轻度心脏表型并模拟IP3R活性增加的病理生理条件。在这个模型中,IP3ICR能够根据全局Ca2活性增加或减少SCaW的发生。这种基于IP3ICR的调节机制可以在两种“模式”下运行,这取决于细胞内的CR活性和效率(例如SCaW和/或局部Ryanodine受体(RyR)Ca2释放事件,分别):a)在细胞水平上增强CICR机制的模式,导致改善的兴奋-收缩耦合(ECC)和最终更好的心肌收缩,和b)处于保护模式,其中CICR活性被削减以防止细胞水平的Ca2波的发生,从而降低器官水平的心律失常发生的可能性。
    In heart muscle, the physiological function of IP3-induced Ca2+ release (IP3ICR) from the sarcoplasmic reticulum (SR) is still the subject of intense study. A role of IP3ICR may reside in modulating Ca2+-dependent cardiac arrhythmogenicity. Here we observe the propensity of spontaneous intracellular Ca2+ waves (SCaW) driven by Ca2+-induced Ca2+ release (CICR) in ventricular myocytes as a correlate of arrhythmogenicity on the organ level. We observe a dual mode of action of IP3ICR on SCaW generation in an IP3R overexpression model. This model shows a mild cardiac phenotype and mimics pathophysiological conditions of increased IP3R activity. In this model, IP3ICR was able to increase or decrease the occurrence of SCaW depending on global Ca2+ activity. This IP3ICR-based regulatory mechanism can operate in two \"modes\" depending on the intracellular CICR activity and efficiency (e.g. SCaW and/or local Ryanodine Receptor (RyR) Ca2+ release events, respectively): a) in a mode that augments the CICR mechanism at the cellular level, resulting in improved excitation-contraction coupling (ECC) and ultimately better contraction of the myocardium, and b) in a protective mode in which the CICR activity is curtailed to prevent the occurrence of Ca2+ waves at the cellular level and thus reduce the probability of arrhythmogenicity at the organ level.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号