Excision Repair

  • 文章类型: Journal Article
    转录阻断DNA损伤是通过转录偶联核苷酸切除修复(TC-NER)特异性靶向的,它消除了广谱的DNA损伤,以保持转录输出,从而使细胞稳态抵消衰老。TC-NER由RNA聚合酶II在DNA损伤处的停滞启动,触发TC-NER特异性蛋白CSA的组装,CSB和UVSSA。CSA,含WD40重复蛋白,是由DDB1,CUL4A/B和RBX1(CRL4CSA)组成的cullin-RING泛素连接酶复合物的底物受体亚基。尽管已经报道了CRL4CSA对几种TC-NER蛋白的泛素化,目前还不清楚这个复合体是如何被调控的。为了解开动态的分子相互作用和这种复合物的调节,我们将单步蛋白质复合物分离与质谱分析相结合,并将DDA1鉴定为CSA相互作用蛋白。Cryo-EM分析表明DDA1是CRL4CSA复合物的组成部分。功能分析显示,DDA1在TC-NER过程中协调泛素化动力学,并且是该过程的有效周转和进展所必需的。
    Transcription-blocking DNA lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which removes a broad spectrum of DNA lesions to preserve transcriptional output and thereby cellular homeostasis to counteract aging. TC-NER is initiated by the stalling of RNA polymerase II at DNA lesions, which triggers the assembly of the TC-NER-specific proteins CSA, CSB and UVSSA. CSA, a WD40-repeat containing protein, is the substrate receptor subunit of a cullin-RING ubiquitin ligase complex composed of DDB1, CUL4A/B and RBX1 (CRL4CSA). Although ubiquitination of several TC-NER proteins by CRL4CSA has been reported, it is still unknown how this complex is regulated. To unravel the dynamic molecular interactions and the regulation of this complex, we apply a single-step protein-complex isolation coupled to mass spectrometry analysis and identified DDA1 as a CSA interacting protein. Cryo-EM analysis shows that DDA1 is an integral component of the CRL4CSA complex. Functional analysis reveals that DDA1 coordinates ubiquitination dynamics during TC-NER and is required for efficient turnover and progression of this process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核苷酸切除修复(NER)是最普遍的修复途径,去除由化学或物理试剂引起的广泛的DNA螺旋扭曲病变。该修复过程的最后步骤是填隙修复合成和随后的连接。XPA是中央NER支架蛋白因子,可参与切口后NER阶段。在由XPF-ERCC1核酸酶进行的受损链的第一次切口后加载复制机制,形成由XPG内切核酸酶处理的受损5'-瓣。Flap内切核酸酶I(FEN1)是复制机制的关键组成部分,对于新合成的链的成熟绝对必不可少。FEN1还有助于碱基切除修复的长补片途径。这里,我们使用一组含有荧光标记的5'-瓣和不同大小间隙的DNA底物来分析可能的修复因子-复制因子相互作用。检测具有每个测试DNA的三元XPA-FEN1-DNA复合物。此外,我们证明了由于蛋白质-蛋白质相互作用而在没有DNA的情况下XPA-FEN1复合物的形成。功能测定显示XPA适度抑制FEN1催化活性。使用荧光标记的XPA,三元RPA-XPA-FEN1复合物的形成,XPA同时容纳FEN1和RPA触点,可以提议。我们讨论了XPA-FEN1相互作用在NER相关的DNA再合成和/或其他DNA代谢过程中的可能功能作用,其中XPA可以参与FEN1的复合物。
    Nucleotide excision repair (NER) is the most universal repair pathway, which removes a wide range of DNA helix-distorting lesions caused by chemical or physical agents. The final steps of this repair process are gap-filling repair synthesis and subsequent ligation. XPA is the central NER scaffolding protein factor and can be involved in post-incision NER stages. Replication machinery is loaded after the first incision of the damaged strand that is performed by the XPF-ERCC1 nuclease forming a damaged 5\'-flap processed by the XPG endonuclease. Flap endonuclease I (FEN1) is a critical component of replication machinery and is absolutely indispensable for the maturation of newly synthesized strands. FEN1 also contributes to the long-patch pathway of base excision repair. Here, we use a set of DNA substrates containing a fluorescently labeled 5\'-flap and different size gap to analyze possible repair factor-replication factor interactions. Ternary XPA-FEN1-DNA complexes with each tested DNA are detected. Furthermore, we demonstrate XPA-FEN1 complex formation in the absence of DNA due to protein-protein interaction. Functional assays reveal that XPA moderately inhibits FEN1 catalytic activity. Using fluorescently labeled XPA, formation of ternary RPA-XPA-FEN1 complex, where XPA accommodates FEN1 and RPA contacts simultaneously, can be proposed. We discuss possible functional roles of the XPA-FEN1 interaction in NER related DNA resynthesis and/or other DNA metabolic processes where XPA can be involved in the complex with FEN1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    转录偶联核苷酸切除修复(TC-NER)去除阻断RNA聚合酶II(PolII)转录的DNA损伤。TC-NER的关键步骤是招募TFIIH综合体,启动DNA解链和损伤验证;然而,在TC-NER期间招募TFIIH的机制,特别是在酵母中,尚不清楚。这里,我们表明,延伸因子1(Elf1)的C端结构域(CTD)通过结合TFIIH在酵母中的TC-NER中起关键作用。使用CPD-seq对UV诱导的环丁烷嘧啶二聚体(CPD)的全基因组修复进行分析,表明酵母中的Elf1CTD是有效的TC-NER所必需的。我们显示Elf1CTD在体外与TFIIH的p62亚基的pleckstrin同源(PH)结构域结合,并确定Elf1CTD中推定的TFIIH相互作用区域(TIR),该区域对PH结合和TC-NER很重要。Elf1TIR显示功能,结构,以及与哺乳动物紫外线敏感性综合征A(UVSSA)蛋白中保守TIR的序列相似性,在哺乳动物细胞中的TC-NER期间招募TFIIH。这些发现表明,Elf1CTD通过招募TFIIH来响应PolII在DNA损伤中的停滞,从而在TC-NER中充当哺乳动物UVSSA的功能对应物。
    Transcription coupled-nucleotide excision repair (TC-NER) removes DNA lesions that block RNA polymerase II (Pol II) transcription. A key step in TC-NER is the recruitment of the TFIIH complex, which initiates DNA unwinding and damage verification; however, the mechanism by which TFIIH is recruited during TC-NER, particularly in yeast, remains unclear. Here, we show that the C-terminal domain (CTD) of elongation factor-1 (Elf1) plays a critical role in TC-NER in yeast by binding TFIIH. Analysis of genome-wide repair of UV-induced cyclobutane pyrimidine dimers (CPDs) using CPD-seq indicates that the Elf1 CTD in yeast is required for efficient TC-NER. We show that the Elf1 CTD binds to the pleckstrin homology (PH) domain of the p62 subunit of TFIIH in vitro, and identify a putative TFIIH-interaction region (TIR) in the Elf1 CTD that is important for PH binding and TC-NER. The Elf1 TIR shows functional, structural, and sequence similarities to a conserved TIR in the mammalian UV sensitivity syndrome A (UVSSA) protein, which recruits TFIIH during TC-NER in mammalian cells. These findings suggest that the Elf1 CTD acts as a functional counterpart to mammalian UVSSA in TC-NER by recruiting TFIIH in response to Pol II stalling at DNA lesions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核苷酸切除修复(NER)清除紫外线形成的DNA加合物的基因组,环境代理人,和抗肿瘤药物。导致核心NER反应缺陷的基因突变会导致皮肤癌易患色素干皮病。在NER,通过复合物在25-30个残基的寡核苷酸内切除DNA损伤,由蛋白质-蛋白质相互作用调节的多步反应。这些相互作用在20世纪90年代首次被描述为使用下拉法,co-IP和酵母双杂交测定。最近,高分辨率结构和详细的功能研究已经开始产生沿着NER反应坐标的进展的详细图片。在这次审查中,我们重点介绍了通过结构和/或功能研究对蛋白质之间相互作用的研究如何为NER机制识别和切除DNA损伤提供了见解.此外,我们识别报告,但缺乏表征或未经证实的相互作用,需要进一步验证。
    Nucleotide excision repair (NER) clears genomes of DNA adducts formed by UV light, environmental agents, and antitumor drugs. Gene mutations that lead to defects in the core NER reaction cause the skin cancer-prone disease xeroderma pigmentosum. In NER, DNA lesions are excised within an oligonucleotide of 25-30 residues via a complex, multi-step reaction that is regulated by protein-protein interactions. These interactions were first characterized in the 1990s using pull-down, co-IP and yeast two-hybrid assays. More recently, high-resolution structures and detailed functional studies have started to yield detailed pictures of the progression along the NER reaction coordinate. In this review, we highlight how the study of interactions among proteins by structural and/or functional studies have provided insights into the mechanisms by which the NER machinery recognizes and excises DNA lesions. Furthermore, we identify reported, but poorly characterized or unsubstantiated interactions in need of further validation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过核苷酸切除修复,从多细胞生物体的基因组中去除大量的DNA加合物,例如由紫外线诱导的加合物。通过两种不同的机制发生,全球修复,需要DNA损伤识别因子XPC(着色性干皮病互补组C),和转录偶联修复(TCR),这不是。TCR在延伸RNA聚合酶II遇到DNA损伤时启动,因此,对仅通过TCR修复的XPC突变体中的全基因组切除修复的分析提供了一个独特的机会,可以定位通过依赖于捕获RNA转录产物的方法错过的转录事件,从而受到其稳定性和/或修饰(5'-加帽或3'-聚腺苷酸化)的限制。这里,我们已经在模型生物秀丽隐杆线虫中进行了切除修复测序(XR-seq),以在具有正常切除修复的野生型菌株中生成全基因组修复图,缺乏TCR的菌株(csb-1),和仅由TCR(xpc-1)修复的应变。分析xpc-1XR-seq修复图与RNA映射数据集之间的交叉点(RNA-seq,长加帽和短加帽的RNA-seq)揭示了以前未识别的转录位点,并进一步增强了我们对thtableis重要模型生物基因组的理解。
    Bulky DNA adducts such as those induced by ultraviolet light are removed from the genomes of multicellular organisms by nucleotide excision repair, which occurs through two distinct mechanisms, global repair, requiring the DNA damage recognition-factor XPC (xeroderma pigmentosum complementation group C), and transcription-coupled repair (TCR), which does not. TCR is initiated when elongating RNA polymerase II encounters DNA damage, and thus analysis of genome-wide excision repair in XPC-mutants only repairing by TCR provides a unique opportunity to map transcription events missed by methods dependent on capturing RNA transcription products and thus limited by their stability and/or modifications (5\'-capping or 3\'-polyadenylation). Here, we have performed eXcision Repair-sequencing (XR-seq) in the model organism Caenorhabditis elegans to generate genome-wide repair maps in a wild-type strain with normal excision repair, a strain lacking TCR (csb-1), and a strain that only repairs by TCR (xpc-1). Analysis of the intersections between the xpc-1 XR-seq repair maps with RNA-mapping datasets (RNA-seq, long- and short-capped RNA-seq) reveal previously unrecognized sites of transcription and further enhance our understanding of the genome of this important model organism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    相对低水平的抗氧化酶与高氧代谢相结合导致中枢神经系统组织中许多氧化性DNA损伤的形成。最近,犬尿氨酸(KYNA),知道它的神经保护特性,在这方面得到了越来越多的关注。因此,我们的假设假设,脑中KYNA水平的升高将对碱基切除修复途径的所选酶的mRNA表达产生积极影响,并提高其切除绵羊脑特定区域受损核碱基的效率.这项研究是在成年发情绵羊(n=18)上进行的,其中将两种不同剂量的KYNA(20和100μg/天)注入第三脑室三天。分子和生化分析包括下丘脑(视前区和中膜-基底区),海马(CA3区)和杏仁核(中央杏仁核),最后一次输注后立即从安乐死的绵羊大脑中解剖。结果表明,在所有检查的组织中施用两种剂量的KYNA后,N-甲基嘌呤DNA糖基化酶(MPG)的相对mRNA丰度显着增加P<0.001)。与对照组相比,响应较低的KYNA剂量,所有组织中胸腺嘧啶-DNA糖基化酶(TDG)的转录均显着增加(P<0.001)。此外,在两个动物组中,8-氧鸟嘌呤(8-oxoG)DNA糖基化酶(OGG1)mRNA水平也较高(P<0.001)。此外,在下丘脑,海马体和杏仁核,在两种剂量的KYNA下,AP核酸内切酶1(APE1)mRNA表达均增加。此外,两种剂量的KYNA均显着刺激下丘脑和杏仁核的8-oxoG切除效率(P<0.05-0.001)。较低和较高剂量的KYNA显着影响了所有结构中εA和εC的有效性(P<0.01-0.001)。总之,KYNA在大脑中的有利作用可能包括通过刺激BER途径酶的表达和效率来保护神经和神经胶质细胞中的遗传物质。
    Relatively low levels of antioxidant enzymes coupled with high oxygen metabolism result in the formation of numerous oxidative DNA damages in the tissues of the central nervous system. Recently, kynurenic acid (KYNA), knowns for its neuroprotective properties, has gained increasing attention in this context. Therefore, our hypothesis assumed that increased KYNA levels in the brain would positively influence mRNA expression of selected enzymes of the base excision repair pathway as well as enhance their efficiency in excising damaged nucleobases in specific areas of the sheep brain. The study was conducted on adult anestrous sheep (n = 18), in which two different doses of KYNA (20 and 100 μg/day) were infused into the third brain ventricle for three days. Molecular and biochemical analysis included the hypothalamus (preoptic and mediol-basal areas), hippocampus (CA3 field) and amygdala (central amygdaloid nucleus), dissected from the brain of sheep euthanized immediately after the last infusion. The results revealed a significant increase P < 0.001) in the relative mRNA abundance of N-methylpurine DNA glycosylase (MPG) following administration of both dose of KYNA across all examined tissues. The transcription of thymine-DNA glycosylase (TDG) increased significantly (P < 0.001) in all tissues in response to the lower KYNA dose compared to the control group. Moreover, 8-oxoguanine (8-oxoG) DNA glycosylase (OGG1) mRNA levels were also higher in both animal groups (P < 0.001). In addition, in the hypothalamus, hippocampus and amygdala, AP endonuclease 1 (APE1) mRNA expression increased under both doses of KYNA. Moreover, the both dose of KYNA significantly stimulated the efficiency of 8-oxoG excision in hypothalamus and amygdala (P < 0.05-0.001). The lower and higher doses of KYNA significantly influenced the effectiveness of εA and εC in all structures (P < 0.01-0.001). In conclusion, the favorable effect of KYNA in the brain may include the protection of genetic material in nerve and glial cells by stimulating the expression and efficiency of BER pathway enzymes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CTC1-STN1-TEN1(CST)是一种单链DNA结合蛋白,对于端粒长度维持至关重要,在DNA复制和修复中具有其他全基因组作用。虽然CST以前被证明在双链断裂修复中起作用并促进复制重启,目前尚不清楚它是否在其他DNA修复途径中具有专门作用.正确和有效的DNA修复对于保护基因组完整性至关重要。端粒和其他富含G的区域强烈倾向于以8-氧胍的形式氧化DNA损伤,通常通过碱基切除修复(BER)途径修复。此外,最近的研究表明CST在氧化性DNA损伤的修复中起作用。因此,我们测试了CST是否与BER蛋白相互作用并调节其活性。这里,我们表明CST强烈刺激参与BER的蛋白质,包括OGG1,Polβ,APE1和LIGI,在端粒和非端粒DNA底物上。该途径的生化重建表明CST刺激BER。最后,敲除STN1或CTC1导致8-氧鸟嘌呤水平升高,表明在没有CST的情况下有缺陷的BER。合并,我们的结果定义了BER中CST的一个未被发现的函数,它作为刺激因子促进有效的全基因组氧化修复。
    CTC1-STN1-TEN1 (CST) is a single-stranded DNA binding protein vital for telomere length maintenance with additional genome-wide roles in DNA replication and repair. While CST was previously shown to function in double-strand break repair and promote replication restart, it is currently unclear whether it has specialized roles in other DNA repair pathways. Proper and efficient repair of DNA is critical to protecting genome integrity. Telomeres and other G-rich regions are strongly predisposed to oxidative DNA damage in the form of 8-oxoguanines, which are typically repaired by the base-excision repair (BER) pathway. Moreover, recent studies suggest that CST functions in the repair of oxidative DNA lesions. Therefore, we tested whether CST interacts with and regulates BER protein activity. Here, we show that CST robustly stimulates proteins involved in BER, including OGG1, Pol β, APE1, and LIGI, on both telomeric and non-telomeric DNA substrates. Biochemical reconstitution of the pathway indicates that CST stimulates BER. Finally, knockout of STN1 or CTC1 leads to increased levels of 8-oxoguanine, suggesting defective BER in the absence of CST. Combined, our results define an undiscovered function of CST in BER, where it acts as a stimulatory factor to promote efficient genome-wide oxidative repair.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:作为碱基切除修复系统中的核心酶,尿嘧啶DNA糖基化酶(UDG)在维持基因组完整性和正常细胞周期中是必不可少的。其异常活性干预癌症和神经变性疾病。以前的基于等温扩增和成簇定期间隔短回文重复/Cas(CRISPR/Cas)系统的UDG测定灵敏度很好,但是在分析流程中遇到了并发症,时间,和探头设计。等温扩增后,CRISPR/Cas试剂应单独添加额外的手动步骤,并设计其指导RNA(gRNA),考虑到原型间隔区相邻基序(PAM)位点的存在。
    结果:我们在此描述了UDG-retardedCRISPR扩增测定,称为“URECA”。在乌雷卡,等温核酸(NA)扩增与CRISPR/Cas12a系统紧密结合构成一锅法,等温CRISPR扩增系统。设计具有尿嘧啶(U)碱基的UDG底物(US)的等温NA扩增以激活和促进CRISPR/Cas12a反应。这样的方案使我们能够设想UDG将通过切除U碱基并弄乱美国来停止等温CRISPR扩增反应。基于这个原则,该试验检测到UDG活性在50分钟内降至9.17×10-4U/mL。有了乌雷卡,我们完成了血浆和尿液中UDG活性的回收率测试,具有很高的精密度和重现性,并且可靠地测定了细胞提取物中的UDG活性。此外,我们验证了它筛选候选UDG抑制剂的能力,显示其在实际应用和药物发现中的潜力。
    结论:URECA提供了进一步的优点:i)该测定是无缝的。在目标识别之后,反应一步进行,没有任何中间步骤,ii)探头设计简单。与传统的基于CRISPR/Cas12a的检测方法不同,URECA在探针设计中不考虑PAM位点,因为Cas12a激活依赖于瞬时gRNA与单链DNA链的结合。通过合理设计对其他酶具有特异性的酶底物探针,同时保持作为等温CRISPR扩增模板的作用,URECA的检测原理将扩展到为各种生物酶设计生物传感器,临床意义。
    BACKGROUND: As a core enzyme in the base excision repair system, uracil DNA glycosylase (UDG) is indispensable in maintaining genomic integrity and normal cell cycles. Its abnormal activity intervenes in cancers and neurodegerative diseases. Previous UDG assays based on isothermal amplification and Clustered Regularly Interspaced Short Palindromic Repeats/Cas (CRISPR/Cas) system were fine in sensitivity, but exposed to complications in assay flow, time, and probe design. After isothermal amplification, a CRISPR/Cas reagent should be separately added with extra manual steps and its guide RNA (gRNA) should be designed, considering the presence of protospacer adjacent motif (PAM) site.
    RESULTS: We herein describe a UDG-REtarded CRISPR Amplification assay, termed \'URECA\'. In URECA, isothermal nucleic acid (NA) amplification and CRISPR/Cas12a system were tightly combined to constitute a one-pot, isothermal CRISPR amplification system. Isothermal NA amplification for a UDG substrate (US) with uracil (U) bases was designed to activate and boost CRISPR/Cas12a reaction. Such scheme enabled us to envision that UDG would halt the isothermal CRISPR amplification reaction by excising U bases and messing up the US. Based on this principle, the assay detected the UDG activity down to 9.17 x 10-4 U/mL in 50 min. With URECA, we fulfilled the recovery test of UDG activities in plasma and urine with high precision and reproducibility and reliably determined UDG activities in cell extracts. Also, we verified its capability to screen candidate UDG inhibitors, showing its potentials in practical application as well as drug discovery.
    CONCLUSIONS: URECA offers further merits: i) the assay is seamless. Following target recognition, the reactions proceed in one-step without any intervening steps, ii) probe design is simple. Unlike the conventional CRISPR/Cas12a-based assays, URECA does not consider the PAM site in probe design as Cas12a activation relies on instantaneous gRNA binding to single-stranded DNA strands. By rationally designing an enzyme substrate probe to be specific to other enzymes, while keeping a role as a template for isothermal CRISPR amplification, the detection principle of URECA will be expanded to devise biosensors for various enzymes of biological, clinical significance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    转录对于细胞过程极为重要,但可能会受到RNA聚合酶II(RNAPII)暂停和停滞的阻碍。Cockayne综合征蛋白B(CSB)促进暂停的RNAPII的进展或启动转录偶联核苷酸切除修复(TC-NER)以去除停滞的RNAPII。然而,CSB在损伤后启动TC-NER的具体机制尚不清楚.在这项研究中,我们确定了ARK2N-CK2复合物在CSB介导的TC-NER启动中不可或缺的作用.ARK2N-CK2复合物通过CSB募集到损伤位点,然后磷酸化CSB。CSB的磷酸化增强了其与停滞的RNAPII的结合,延长CSB与染色质的关联并促进CSA介导的停滞RNAPII的泛素化。与这一发现一致,Ark2n-/-小鼠表现出类似于Cockayne综合征的表型。这些发现揭示了ARK2N-CK2复合物在通过CSB控制RNAPII命运中的关键作用,弥合启动TC-NER所需的关键差距。
    Transcription is extremely important for cellular processes but can be hindered by RNA polymerase II (RNAPII) pausing and stalling. Cockayne syndrome protein B (CSB) promotes the progression of paused RNAPII or initiates transcription-coupled nucleotide excision repair (TC-NER) to remove stalled RNAPII. However, the specific mechanism by which CSB initiates TC-NER upon damage remains unclear. In this study, we identified the indispensable role of the ARK2N-CK2 complex in the CSB-mediated initiation of TC-NER. The ARK2N-CK2 complex is recruited to damage sites through CSB and then phosphorylates CSB. Phosphorylation of CSB enhances its binding to stalled RNAPII, prolonging the association of CSB with chromatin and promoting CSA-mediated ubiquitination of stalled RNAPII. Consistent with this finding, Ark2n-/- mice exhibit a phenotype resembling Cockayne syndrome. These findings shed light on the pivotal role of the ARK2N-CK2 complex in governing the fate of RNAPII through CSB, bridging a critical gap necessary for initiating TC-NER.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:胶质母细胞瘤(GBM)患者预后不良。虽然DNA烷化剂替莫唑胺(TMZ)是化疗的主要药物,治疗抗性在患者中发展迅速。碱基切除修复抑制剂TRC102(甲氧胺)逆转临床前神经胶质瘤模型中的TMZ抗性。我们试图研究口服TRC102+TMZ治疗复发性GBM(rGBM)的疗效和安全性。
    方法:A预注册(NCT02395692),非随机化,多中心,计划并通过成人脑肿瘤协会(ABTC-1402)进行2期临床试验(BERT).第1组包括首次复发的贝伐单抗初治GBM患者,与主要终点的反应率。如果确定了足够的活动,计划在贝伐单抗难治性患者中设立第二组.次要终点是总生存期(OS),无进展生存期(PFS),六个月时的PFS(PFS-6),和毒性。
    结果:第1组纳入了19名患者,中位数为两个治疗周期。没有观察到客观反应,因此,手臂2没有打开。中位OS为11.1个月(95CI8.2-17.9)。PFS中位数为1.9个月(95CI1.8-3.7)。PFS-6为10.5%(95CI1.3-33.1%)。大多数毒性为1-2级,有2例3级淋巴细胞减少和1例4级血小板减少。两名PFS≥17个月和OS>32个月的患者被视为“延长幸存者”。肿瘤组织的RNA测序,在诊断时获得的,表现出显著丰富的DNA损伤反应(DDR)特征,染色体不稳定性(CIN70,CIN25),和“延长幸存者”中的细胞增殖(PCNA25)。
    结论:这些发现证实了TRC102+TMZ治疗rGBM患者的安全性和可行性。他们还保证在富含生物标志物的试验中对联合治疗进行进一步评估,这些试验招募具有基线高度激活DDR通路的GBM患者。
    UNASSIGNED: Patients with glioblastoma (GBM) have a dismal prognosis. Although the DNA alkylating agent temozolomide (TMZ) is the mainstay of chemotherapy, therapeutic resistance rapidly develops in patients. Base excision repair inhibitor TRC102 (methoxyamine) reverses TMZ resistance in preclinical glioma models. We aimed to investigate the efficacy and safety of oral TRC102+TMZ in recurrent GBM (rGBM).
    UNASSIGNED: A preregistered (NCT02395692), nonrandomized, multicenter, phase 2 clinical trial (BERT) was planned and conducted through the Adult Brain Tumor Consortium (ABTC-1402). Arm 1 included patients with bevacizumab-naïve GBM at the first recurrence, with the primary endpoint of response rates. If sufficient activity was identified, a second arm was planned for the bevacizumab-refractory patients. The secondary endpoints were overall survival (OS), progression-free survival (PFS), PFS at 6 months (PFS6), and toxicity.
    UNASSIGNED: Arm 1 enrolled 19 patients with a median of two treatment cycles. Objective responses were not observed; hence, arm 2 did not open. The median OS was 11.1 months [95% confidence interval (CI), 8.2-17.9]. The median PFS was 1.9 months (95% CI, 1.8-3.7). The PFS6 was 10.5% (95% CI, 1.3%-33.1%). Most toxicities were grades 1 and 2, with two grade 3 lymphopenias and one grade 4 thrombocytopenia. Two patients with PFS ≥ 17 months and OS > 32 months were deemed \"extended survivors.\" RNA sequencing of tumor tissue, obtained at diagnosis, demonstrated significantly enriched signatures of DNA damage response (DDR), chromosomal instability (CIN70, CIN25), and cellular proliferation (PCNA25) in \"extended survivors.\"
    UNASSIGNED: These findings confirm the safety and feasibility of TRC102+TMZ in patients with rGBM. They also warrant further evaluation of combination therapy in biomarker-enriched trials enrolling GBM patients with baseline hyperactivated DDR pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号