Eudragit® RS

  • 文章类型: Journal Article
    可能与3D打印相结合的热熔挤出(HME)是一种有前途的技术,用于制造剂型,例如药物洗脱植入物,甚至可能单独适应患者特定的解剖结构。然而,这些制造方法涉及在加工过程中掺入的药物热降解的风险。在这项工作中,在HME期间使用聚合物Eudragit®RS研究了抗炎药地塞米松(DEX)的稳定性,乙基纤维素和聚环氧乙烷。挤出过程在不同温度下进行。此外,螺杆加速速度的影响,研究了增塑剂柠檬酸三乙酯和聚乙二醇6000的添加或抗氧化剂丁基化羟基甲苯和生育酚的添加。通过适用于检测热降解产物的高效液相色谱法分析DEX回收率。加工温度对药物稳定性的影响最强,这被发现在某些加工条件下将DEX回收率降低至<20%。此外,观察到测试聚合物之间的差异,而添加剂的使用并没有导致药物稳定性的显著变化。总之,确定了合适的挤出参数,用于处理DEX,对测试的聚合物具有高药物回收率。此外,强调了受几个参数影响的HME期间药物稳定性的合适分析方法的重要性。
    Hot-melt extrusion (HME) potentially coupled with 3D printing is a promising technique for the manufacturing of dosage forms such as drug-eluting implants which might even be individually adapted to patient-specific anatomy. However, these manufacturing methods involve the risk of thermal degradation of incorporated drugs during processing. In this work, the stability of the anti-inflammatory drug dexamethasone (DEX) was studied during HME using the polymers Eudragit® RS, ethyl cellulose and polyethylene oxide. The extrusion process was performed at different temperatures. Furthermore, the influence of accelerated screw speed, the addition of the plasticizers triethyl citrate and polyethylene glycol 6000 or the addition of the antioxidants butylated hydroxytoluene and tocopherol in two concentrations were studied. The DEX recovery was analyzed by a high performance liquid chromatography method suitable for the detection of thermal degradation products. The strongest impact on the drug stability was found for the processing temperature, which was found to reduce the DEX recovery to <20% for certain processing conditions. In addition, differences between tested polymers were observed, whereas the use of additives did not result in remarkable changes in drug stability. In conclusion, suitable extrusion parameters were identified for the processing of DEX with high drug recovery rates for the tested polymers. Moreover, the importance of a suitable analysis method for drug stability during HME that is influenced by several parameters was highlighted.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物乳杆菌的生长,乳杆菌属的成员,在肠道的细菌微生物群中起着至关重要的作用,受到锰离子的显著影响。通过利用乳铁蛋白的螯合能力,可以将它们安全地递送至肠。这项工作的目的是将锰离子饱和的乳铁蛋白(MnLf)封装在基于Eudragit®RS聚合物的系统中,以保护蛋白质在胃环境中免受降解和锰释放。截留效率令人满意,达到约95%,最重要的是,锰离子在微粒(MPs)形成过程中没有释放。蛋白质从新鲜制备的MP的释放曲线是持续的,在第一个小时内释放不到15%的蛋白质。为了达到相似的蛋白质释放效率,冷冻干燥在10%(w/v)甘露醇作为冷冻保护剂存在下进行,用于在-20°C冷冻的MPs。具有包封的MnLf的MPs对植物乳杆菌表现出益生元活性。更重要的是,在培养基中存在等量的自由形式的锰离子,以及被包裹在MPs中的乳铁蛋白螯合,对刺激细菌生长也有类似的影响。这表明我们制备的体系中锰离子的生物利用度非常好。
    The growth of Lactobacillus plantarum, a member of the Lactobacillus genus, which plays a crucial role in the bacterial microbiome of the gut, is significantly influenced by manganese ions. They can be safely delivered to the intestines by exploiting the chelating abilities of lactoferrin. The aim of this work was to encapsulate lactoferrin saturated with manganese ions (MnLf) in a system based on the Eudragit® RS polymer to protect protein from degradation and manganese release in the gastric environment. The entrapment efficiency was satisfactory, reaching about 95%, and most importantly, manganese ions were not released during microparticles (MPs) formation. The release profile of the protein from the freshly prepared MPs was sustained, with less than 15% of the protein released within the first hour. To achieve similar protein release efficiency, freeze-drying was carried out in the presence of 10% (w/v) mannitol as a cryoprotectant for MPs frozen at -20 °C. MPs with encapsulated MnLf exhibited prebiotic activity towards Lactobacillus plantarum. More importantly, the presence of equivalent levels of manganese ions in free form in the medium, as well as chelating by lactoferrin encapsulated in MPs, had a similar impact on stimulating bacterial growth. This indicates that the bioavailability of manganese ions in our prepared system is very good.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Purpose: The main objective of the present study was to develop the colonic delivery system for 5-aminosalicylic acid (5-ASA) as an anti-inflammatory drug. Methods: Matrix pellets containing various proportions of alginate, calcium and Eudragit® RS were prepared by extrusion-spheronization technique. Thermal treatment was used to investigate the effect of the curing process on the surface morphology, mechanical and physicochemical properties and in vitro drug release profile of pellets. Based on the obtained results optimal formulations were selected to coating by the Eudragit® RS and subjected to a subsequent continuous dissolution test. Results: Image analysis and also scanning electron microscopy results proved acceptable morphology of the pellets. The fourier transform infrared spectroscopy and differential scanning calorimetry studies ruled out any interactions between the formulation\'s components. Curing process did not alter the mechanical properties of pellets. The release rate of the drug from matrices was prolonged due to the decreased porosity of cured pellets. Furthermore, selected cured pellets which coated with Eudragit® RS, prevented undesired premature drug release. Conclusion: Formulation containing 17.5% calcium, 17.5% alginate, and a coating level of 10% demonstrated enhanced drug release so that provided resistance to acidic conditions, allowing complete drug release in alkaline pH, mimicking colonic environment. The slow and consistent drug release from this formulation could be used for treatment of a broader range of Inflammatory bowel disease (IBD) patients especially in whom colonic pH levels have been measured at lower than pH 7.0.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The aim of the present work was to explore the feasibility of 3D printing via fused deposition modeling (FDM) in the manufacturing of a pressure-controlled drug delivery system. Eudragit® RS, a brittle polymer with pH-independent solubility, was chosen to be a suitable excipient for the 3D printing of a pressure-sensitive, capsule-like dosage form. A self-constructed piston extruder was used for hot melt extrusion (HME) of filaments made from Eudragit® RS that could be used for 3D printing. Subsequently, the printing parameters were experimentally optimized with the aid of a self-programmed software. This G-code generator allowed the simple adjustment of printing speed, temperature, extrusion multiplier and layer height. By this, capsule-shaped dosage forms with the desired mechanical properties could be obtained. The effect of physiological pressure events on the drug release behaviour from the novel dosage form was finally tested by using a biorelevant stress test device. These in vitro experiments demonstrated the rapid and quantitative release of the probe drug after applying realistic pressure events. This work illustrated that 3D printing can be an interesting technique for the production of pressure-controlled dosage forms as a new concept of oral drug delivery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Controlled delivery of corticosteroids using nanoparticles to the skin and corneal epithelium may reduce their side effects and maximize treatment effectiveness. Dexamethasone-loaded ethyl cellulose, Eudragit® RS and ethyl cellulose/Eudragit® RS nanoparticles were prepared by the solvent evaporation method. Dexamethasone release from the polymeric nanoparticles was investigated in vitro using Franz diffusion cells. Drug penetration was also assessed ex vivo using excised human skin. Nanoparticle toxicity was determined by MTT and H2DCFDA assays. Eudragit® RS nanoparticles were smaller and positively charged but had a lower dexamethasone loading capacity (0.3-0.7%) than ethyl cellulose nanoparticles (1.4-2.2%). By blending the two polymers (1:1), small (105nm), positively charged (+37mV) nanoparticles with sufficient dexamethasone loading (1.3%) were obtained. Dexamethasone release and penetration significantly decreased with decreasing drug to polymer ratio and increased when Eudragit® RS was blended with ethyl cellulose. Ex vivo, drug release and penetration from the nanoparticles was slower than a conventional cream. The nanoparticles bear no toxicity potentials except ethyl cellulose nanoparticles had ROS generation potential at high concentration. In conclusion, the nanoparticles showed great potential to control the release and penetration of corticosteroids on the skin and mucus membrane and maximize treatment effectiveness.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The aim of this study was to apply quality by design (QbD) for pharmaceutical development of enoxaparin sodium microspheres for colon-specific delivery. The Process Parameters (CPPs) and Critical Quality Attributes (CQAs) were identified. A central composite experimental design was used in order to develop the design space of microspheres for colon-specific delivery that have the desired Quality Target Product Profile (QTPP). The CPPs studied were Eudragit® FS-30D/Eudragit® RS-PO ratio, poly(vinyl alcohol) (PVA) concentration and sodium chloride (NaCl) concentration. The encapsulation efficiency increased with NaCl concentration increase, the percentages of enoxaparin sodium reaching 94% for some formulations. Increasing the ratio Eudragit® FS-30D/Eudragit® RS-PO ensured a relatively complete release of enoxaparin sodium in the environment simulating the colonic pH. Based on these results, the optimum conditions were decided and the optimum formulation was prepared. The results obtained for the latter in terms of in vitro enoxaparin sodium release were good, the microparticles releasing only 9.42% enoxaparin sodium in acidic environment and 15.16% in the medium which simulated duodenal pH, but allowing the release of up to 89.24% in the medium which simulated colonic pH. The in vitro release profile of enoxaparin sodium was close to the ideal one, therefore the system was successfully designed using QbD approach.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号