Equivalent dose

等效剂量
  • 文章类型: Journal Article
    硼中子捕获疗法中的一个重要问题是向肿瘤外部组织的递送剂量。轻离子束系统的国际标准根据距场边缘的距离为场外剂量设定了两个推荐的限制:在距场边缘15厘米至50厘米的距离处,来自所有辐射类型的最大吸收剂量不得超过最大剂量的0.5%。在距离场地边缘>50厘米处,最大吸收剂量不得超过0.1%。本文是我们先前工作的延续,重点是设计基于加速器的BNCT中子源。我们已经设计了一种新颖的光束形状组件,该组件符合IAEA的BNCT治疗标准。使用这个BSA,在目前的工作中,我们通过蒙特卡罗模拟来表征中子场外的剂量。已通过使用环境和等效剂量进行估算来评估场外剂量。还分析了健康组织中的硼摄取以进行等效剂量计算。结论是,我们针对BNCT的未来基于加速器的源的设计相当好地满足了其他形式的放射疗法在场外等效和有效剂量上定义的标准。
    One important issue in Boron Neutron Capture Therapy is the delivered dose to the tissues outside the tumor. An international standard for light ion beam systems sets two recommended limits for out-of-field dose based on distance from the field edge: maximum absorbed dose from all radiation types shall not exceed 0.5 % of the maximum dose at distances 15 cm to 50 cm from the field edge. At distances >50 cm from the field edge, the maximum absorbed dose shall not exceed 0.1 %. This paper is a continuation of our previous works focused on the design of an accelerator-based neutron source for BNCT. We already designed a novel Beam Shape Assembly which meets the IAEA criteria for BNCT treatments. Using this BSA, in the present work, we characterize by Monte Carlo simulations the dose outside the neutron field. The out-of-field dose has been assessed via estimates using the ambient and equivalent dose. Also the boron uptake in healthy tissues has been analyzed for the equivalent dose computation. It is concluded that our design for a future accelerator-based source for BNCT meets reasonably well the criteria defined from other forms of radiotherapy on both equivalent and effective dose outside the field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:可以通过增强的等效辐射剂量(EQDRT)来量化热疗和放射治疗的联合作用。热疗治疗计划的不确定性和治疗期间的调整可能会影响实现的EQDRT。我们开发并比较了放疗计划的EQDRT优化策略,注重对常见调整的稳健性。
    方法:使用Plan2Heat,我们计算了3例宫颈癌患者的计划前热疗计划和治疗调整方案.我们将这些场景导入到RayStation12A中,以四种不同的策略进行优化:(1)常规放射治疗优化规定46Gy到计划目标体积(PTV),(2)使用预规划方案的标称EQDRT优化,在总肿瘤体积(GTV)中靶向均匀58Gy,按照计划(1)保持器官处于危险状态(OAR)剂量,(3)稳健的EQDRT优化,如(2),但添加调整后的方案进行优化,(4)计划库(四个计划),符合策略(2)标准,但在每个计划的一个调整方案上进行优化。我们为每个放射治疗计划计算了预先计划和调整方案的EQDRT分布,评估每个组合的GTV覆盖率和同质性目标。
    结果:EQDRT95%从策略(1)中的49.9-50.9Gy增加到策略(2)中的56.1-57.4Gy,均匀性提高10%。策略(2)表现出最佳的整体稳健性,所有GTV目标的62%在公差范围内。策略(3)在容忍度内的覆盖率目标高于策略(2)(68%vs54%),但均匀性百分比较低(44%vs71%)。策略(4)在调整后的方案中显示出与计划前方案的策略(2)相似的EQDRT95%和同质性。OAR的D0.1%通过策略(2-4)增加了高达6Gy。
    结论:与常规优化相比,EQDRT优化提高了EQDRT水平和均匀性。在预先规划的热疗计划上优化实现了更好的整体鲁棒性。稳健优化提高了覆盖率,但降低了均匀性。计划库可确保在处理调整后的热疗方案时的覆盖范围和均匀性。
    OBJECTIVE: The combined effect of hyperthermia and radiation therapy can be quantified by an enhanced equivalent radiation dose (EQDRT). Uncertainties in hyperthermia treatment planning and adjustments during treatment can impact achieved EQDRT. We developed and compared strategies for EQDRT optimization of radiation therapy plans, focusing on robustness against common adjustments.
    METHODS: Using Plan2Heat, we computed preplanning hyperthermia plans and treatment adjustment scenarios for 3 cervical cancer patients. We imported these scenarios into RayStation 12A for optimization with 4 different strategies: (1) conventional radiation therapy optimization prescribing 46 Gy to the planning target volume (PTV), (2) nominal EQDRT optimization using the preplanning scenario, targeting uniform 58 Gy in the gross tumor volume (GTV), keeping organs at risk doses as in plan 1, (3) robust EQDRT optimization, as plan 2 but adding adjusted scenarios for optimization, and (4) library of plans (4 plans) with strategy 2 criteria but optimizing on 1 adjusted scenario per plan. We calculated for each radiation therapy plan EQDRT distributions for preplanning and adjusted scenarios, evaluating each combination of GTV coverage and homogeneity objectives.
    RESULTS: EQDRT95% increased from 49.9 to 50.9 Gy in strategy 1 to 56.1 to 57.4 Gy in strategy 2 with the preplanning scenario, improving homogeneity by ∼10%. Strategy 2 demonstrated the best overall robustness, with 62% of all GTV objectives within tolerance. Strategy 3 had a higher percentage of coverage objectives within tolerance than strategy 2 (68% vs 54%) but a lower percentage for uniformity (44% vs 71%). Strategy 4 showed a similar EQDRT95% and homogeneity for adjusted scenarios than strategy 2 for a preplanning scenario. D0.1% (radiation dose received by the 0.1% most irradiated volume) for organs at risk was increased by strategies 2 to 4 by up to ∼6 Gy.
    CONCLUSIONS: EQDRT optimization enhances EQDRT levels and uniformity compared with conventional optimization. Better overall robustness is achieved by optimizing the preplanning hyperthermia plan. Robust optimization improves coverage but reduces homogeneity. A library of plans ensures coverage and uniformity when dealing with adjusted hyperthermia scenarios.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    地面伽马辐射是对公众的主要户外辐射之一,根据土壤的类型和地质特性而变化很大。这项研究的目的是评估自然存在的放射性物质(NORM)分布,并评估孟加拉国人口稠密的达卡和Chattogram城市各个工业区内河岸土壤中的危害参数。226Ra的平均活性(37±3),232Th(58±4),发现评估土壤样品中的40K(1129±18)Bqkg-1分别略高于世界平均值32、35和420Bqkg-1。平均镭当量活性(207.49Bqkg-1)以及外部和内部危害指数分别在370Bqkg-1和<1的建议范围内。平均吸收剂量率(99.47nGyhr-1),年有效剂量(0.12mSva-1),ELCR(4.27×10-4),和伽马水平指数(1.58)分别超过世界平均值59nGyhr-1、0.07mSva-1、2.9×10-4和1。然而,从放射学的角度来看,研究区域是安全的,对人们没有辐射健康危害。这项研究的结果可用于产生未来研究的事实基线数据。
    Terrestrial gamma radiation is one of the major outdoor radiation exposures to the general public that varies substantially based on the type and geological properties of the soil. The objective of this study is to evaluate the naturally occurring radioactive materials (NORMs) distribution and assess the hazard parameters in the riverbank soil within various industrial zones in the densely populated Dhaka and Chattogram cities of Bangladesh. The mean activities of 226Ra (37 ± 3), 232Th (58 ± 4), and 40K (1129 ± 18) Bqkg-1 in the assessed soil samples were found to be slightly higher than the world average values 32, 35, and 420 Bqkg-1, respectively. The mean radium equivalent activity (207.49 Bqkg-1) and the external and internal hazard indices were within the recommended limits of 370 Bqkg-1 and <1, respectively. The mean absorbed dose rate (99.47 nGyhr-1), annual effective dose (0.12 mSva-1), ELCR (4.27 × 10-4), and gamma level index (1.58) exceeded the world average values 59 nGyhr-1, 0.07 mSva-1, 2.9 × 10-4, and 1 respectively. However, the studied areas are safe from a radiological viewpoint with no radiation health hazard to the people. The results of this study can be utilized to produce factual baseline data for future studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    越来越多的放射性药物和蛋白质可用于诊断和治疗各种疾病。对现有和新开发的药物放射性核素和蛋白质的需求正在稳步增加。密切监测放射性制药行业和核医学领域工作人员的辐射暴露水平,特别是它们的有效剂量和等效剂量,导致问题,放射性药物的出现是否会影响职业暴露水平。使用来自德国国家剂量登记册的数据来分析和评估这种发展。数据显示,从1997年到2021年,放射性同位素的生产和分配以及核医学工作类别中的有效剂量略有下降。在同一时期,核医学中的手等效剂量稳步增长,放射性同位素的生产和分布没有明显的趋势。在过去的几十年里,已经采取了有意的努力和措施来确保辐射防护。必须连续使用监测和减少剂量的仪器。鉴于有效剂量低,未来的重点将是根据ALARA原则减少剂量。在接下来的几年中,应仔细观察手等效剂量的发展。
    An increasing number of radiopharmaceuticals and proteins are available for diagnosing and treating various diseases. The demand for existing and newly developed pharmaceutical radionuclides and proteins is steadily increasing. The radiation exposure levels of workers in the radiopharmaceutical industry and nuclear medicine field are closely monitored, specifically their effective dose and equivalent dose, leading to the question, of whether the dawn of radiopharmaceuticals affects the occupational exposure level. This development is analyzed and evaluated with data from the German National Dose Register. Data shows that the effective dose in the work categories production and distribution of radioisotopes as well as nuclear medicine slightly decreased from 1997 to 2021. Over the same period, the hand equivalent dose in nuclear medicine increases steadily, with no discernible trend in production and distribution of radioisotopes. Over the past few decades, intentional efforts and measures have been taken to ensure radiation protection. Instruments for monitoring and dose reduction must be continuously applied. Given the low effective dose, the focus in future shall be on dose reduction following theaslowasreasonablyachievable principle. The development of the hand equivalent dose should be carefully observed in the upcoming years.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目标:在精神病学中,多药或高精神药物剂量会增加不良药物事件(ADE)的患病率。然而,多重用药和ADE之间的完整关系尚不清楚,很少有研究评估ADE精神药物的剂量当量。因此,我们进行了回顾性分析,以阐明复方和氯丙嗪(CP)的作用-,地西泮(DAP)-,住院患者所有ADE的丙咪胺等效剂量。
    方法:纳入2016年4月1日至2018年3月31日在日本某医院住院的精神病患者。评估ADE严重程度和因果关系。采用多因素logistic回归分析评价ADE危险因素。
    结果:在462例患者中进行了分析,在471名患者中,145(31.4%)经历过ADE。因果关系评估确定“可能”为96.5%。最常见的ADE是神经系统疾病(35%)。多因素logistic回归分析显示ADE患病率随着使用药物数量的增加(≥5;p=0.026);CP-等效剂量(p=0.048);以及内分泌,营养,和代谢紊乱(p=0.045)。DAP-等效剂量;传染病和寄生虫病;和伤害,中毒,其他外因的后果降低了ADE患病率(p分别为0.047,0.022和0.021).
    结论:在精神病住院患者中避免多用药并将药物方案调整到安全等效剂量可以减少住院期间的ADE。
    OBJECTIVE: In psychiatry, polypharmacy or high psychotropic drug doses increase adverse drug event (ADE) prevalence. However, the full relationship between polypharmacy and ADEs is unclear, and few studies have evaluated dose equivalents for psychotropic drugs for ADEs. Thus, we conducted a retrospective analysis to clarify the effects of polypharmacy and chlorpromazine (CP)-, diazepam (DAP)-, and imipramine- equivalent doses on all ADEs in inpatients.
    METHODS: Psychiatric inpatients in a Japanese hospital from April 1, 2016 to March 31, 2018, were enrolled. ADE severity and causality were assessed. Multiple logistic regression analyses were performed to evaluate ADE risk factors.
    RESULTS: Among 462 patients analyzed, out of 471 patients enrolled, 145 (31.4%) experienced ADEs. The causality assessment determined that \"possible\" was 96.5%. The most common ADEs were nervous system disorders (35%). Multiple logistic regression analyses indicated an increase in ADE prevalence with the number of drugs used (≥5; p = 0.026); CP-equivalent dose (p = 0.048); and endocrine, nutritional, and metabolic disorders (p = 0.045). DAP-equivalent dose; infectious and parasitic diseases; and injury, poisoning, and consequences of other external causes decreased ADE prevalence (p = 0.047, 0.022, and 0.021, respectively).
    CONCLUSIONS: Avoiding polypharmacy in psychiatric inpatients and adjusting drug regimens to safe equivalent doses could reduce ADEs during hospitalization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:热疗治疗质量通常通过热(剂量)参数进行评估,尽管高热放射增敏作用也受两种方式之间的时间间隔的影响。这项工作通过计算等效辐射剂量(EQDRT,即,仅使用辐射即可达到相同效果所需的剂量)。随后的分析评估了物流的影响。
    方法:对58例接受23-28分1.8-2Gy治疗的患者进行生物治疗评估,并每周进行4-5次热疗。测量的温度(T50)和记录的放疗和热疗之间的时间间隔用于使用扩展的线性二次(LQ)模型计算EQDRT,该模型具有基于大量实验数据的高温LQ参数。接下来,评估了30分钟时间间隔(优化物流)和4小时时间间隔(次优物流)的影响。
    结果:测得的T50和记录的时间间隔的中值平均值为41.2°C(范围39.7-42.5°C)和79分钟(范围34-125分钟),分别,导致5.5Gy(四分位距[IQR]4.0-6.6Gy)的中值总剂量增强(D50)。对于30分钟的时间间隔,增强将增加~30%至7.1Gy(IQR5.5-8.1Gy;p<0.001)。在4小时的时间间隔的情况下,可预期剂量增强降低约40%:3.2Gy(IQR2.3-3.8Gy;p<0.001)。正常组织增强可忽略不计(<0.3Gy),即使是很短的时间间隔。
    结论:生物治疗评估是对热疗治疗的标准热(剂量)评估的有用补充。优化后勤以缩短时间间隔似乎值得提高治疗效果。
    BACKGROUND: Hyperthermia treatment quality is usually evaluated by thermal (dose) parameters, though hyperthermic radiosensitization effects are also influenced by the time interval between the two modalities. This work applies biological modelling for clinical treatment evaluation of cervical cancer patients treated with radiotherapy plus hyperthermia by calculating the equivalent radiation dose (EQDRT, i.e., the dose needed for the same effect with radiation alone). Subsequent analyses evaluate the impact of logistics.
    METHODS: Biological treatment evaluation was performed for 58 patients treated with 23-28 fractions of 1.8-2 Gy plus 4-5 weekly hyperthermia sessions. Measured temperatures (T50) and recorded time intervals between the radiotherapy and hyperthermia sessions were used to calculate the EQDRT using an extended linear quadratic (LQ) model with hyperthermic LQ parameters based on extensive experimental data. Next, the impact of a 30-min time interval (optimized logistics) as well as a 4‑h time interval (suboptimal logistics) was evaluated.
    RESULTS: Median average measured T50 and recorded time intervals were 41.2 °C (range 39.7-42.5 °C) and 79 min (range 34-125 min), respectively, resulting in a median total dose enhancement (D50) of 5.5 Gy (interquartile range [IQR] 4.0-6.6 Gy). For 30-min time intervals, the enhancement would increase by ~30% to 7.1 Gy (IQR 5.5-8.1 Gy; p < 0.001). In case of 4‑h time intervals, an ~ 40% decrease in dose enhancement could be expected: 3.2 Gy (IQR 2.3-3.8 Gy; p < 0.001). Normal tissue enhancement was negligible (< 0.3 Gy), even for short time intervals.
    CONCLUSIONS: Biological treatment evaluation is a useful addition to standard thermal (dose) evaluation of hyperthermia treatments. Optimizing logistics to shorten time intervals seems worthwhile to improve treatment efficacy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:在肽受体核治疗中使用基于Luttium-177(177Lu)的放射性药物正在增加,但是暴露在较高水平辐射下的核医学工作者的数量也是如此。近年来,[177Lu]Lu-DOTA-TATE已开始广泛用于治疗神经内分泌肿瘤。然而,很少有研究评估其管理期间的职业辐射暴露,仍然有一些挑战可能会给工作人员带来更高的剂量,例如缺乏训练有素的人员或完全标准化的程序。作为回应,这项研究旨在为参与[177Lu]Lu-DOTA-TATE管理的工作人员提供职业剂量的综合分析。
    结果:由医生和护士进行的[177Lu]Lu-DOTA-TATE(7.4GBq/session)共32次管理,被研究过。总的来说,采用累积(被动)和/或实时(主动)剂量计对2名医师和4名护士进行独立监测.极端,根据剂量测定量Hp(0.07)评估眼晶状体和全身剂量,Hp(3)和Hp(10),分别。结果发现,铅围裙使医生的剂量率和全身剂量分别降低了71%和69%,分别,护士的比例分别为56%和68%。平均而言,用主动剂量测定法获得0.65±0.18µSv/GBq的归一化Hp(10)值,这通常与被动剂量一致。对于医生来说,最大归一化Hp(0.07)值的中位数在非优势手为41.5µSv/GBq,在优势手为45.2µSv/GBq.对于护士,非优势手15.4µSv/GBq和优势手13.9µSv/GBq。在手上测量的最大剂量与在非优势手的中指/无名指的基础上测量的剂量之间的比率或校正因子导致医师的因子为5/6,护士的因子为3/4。最后,最大Hp(3)正常化剂量导致医师为2.02µSv/GBq,护士为1.76µSv/GBq.
    结论:如果采取了适当的安全措施,[177Lu]Lu-DOTA-TATE的管理对工人来说是一个安全的程序。然而,建议定期监测,以确保不超过年度剂量限值。
    BACKGROUND: The use of lutetium-177 (177Lu)-based radiopharmaceuticals in peptide receptor nuclear therapy is increasing, but so is the number of nuclear medicine workers exposed to higher levels of radiation. In recent years, [177Lu]Lu-DOTA-TATE has begun to be widely used for the treatment of neuroendocrine tumours. However, there are few studies evaluating the occupational radiation exposure during its administration, and there are still some challenges that can result in higher doses to the staff, such as a lack of trained personnel or fully standardised procedures. In response, this study aims to provide a comprehensive analysis of occupational doses to the staff involved in the administration of [177Lu]Lu-DOTA-TATE.
    RESULTS: A total of 32 administrations of [177Lu]Lu-DOTA-TATE (7.4 GBq/session) carried out by a physician and a nurse, were studied. In total, two physicians and four nurses were independently monitored with cumulative (passive) and/or real-time (active) dosemeters. Extremity, eye lens and whole-body doses were evaluated in terms of the dosimetric quantities Hp(0.07), Hp(3) and Hp(10), respectively. It was obtained that lead aprons reduced dose rates and whole-body doses by 71% and 69% for the physicians, respectively, and by 56% and 68% for the nurses. On average, normalised Hp(10) values of 0.65 ± 0.18 µSv/GBq were obtained with active dosimetry, which is generally consistent with passive dosemeters. For physicians, the median of the maximum normalised Hp(0.07) values was 41.5 µSv/GBq on the non-dominant hand and 45.2 µSv/GBq on the dominant hand. For nurses 15.4 µSv/GBq on the non-dominant and 13.9 µSv/GBq on the dominant hand. The ratio or correction factor between the maximum dose measured on the hand and the dose measured on the base of the middle/ring finger of the non-dominant hand resulted in a factor of 5/6 for the physicians and 3/4 for the nurses. Finally, maximum normalised Hp(3) doses resulted in 2.02 µSv/GBq for physicians and 1.76 µSv/GBq for nurses.
    CONCLUSIONS: If appropriate safety measures are taken, the administration of [177Lu]Lu-DOTA-TATE is a safe procedure for workers. However, regular monitoring is recommended to ensure that the annual dose limits are not exceeded.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:尽管在临床实践中越来越多地使用再照射,几乎没有专门的规划软件存在。
    目的:使用2Gy分数(EQD2)的累积等效剂量,通过刚性或可变形的剂量映射,对基于标准剂量的优化函数进行了调整,以进行再辐照计划。组织特异性α/β,处理特定的恢复系数,和基于估计的先前递送的EQD2(EQD2deliv)的逐素调整的EQD2惩罚水平。
    方法:为了演示概念验证,在先前在虚拟人体模上进行前列腺治疗后,计划在三个不同位置将5个部分中的35Gy虚拟球形复发计划目标体积(PTV)。PTV位置表示一个重复辐照场景和两个重新辐照场景。对于每个场景,使用了三种具有相同PTV剂量功能但具有各种危险器官(OAR)EQD2功能的重新计划策略:1)reRTregular:对于所有OAR体素,具有固定EQD2惩罚水平大于EQD2deliv的常规功能。2)reRTreduce:作为reRTregular,但较低的固定EQD2惩罚水平旨在降低OAREQD2。3)reRTvoxelwise:作为reRTregular和reRTreduce,但使用基于EQD2deliv的体素调整的EQD2惩罚水平。PTV接近最小和接近最大剂量(D98%/D2%),同质性指数(HI),评估了合格指数(CI)和累积OAREQD2(α/β=3Gy)。
    结果:对于重复辐照场景,所有策略导致相似的剂量分布.对于重新辐照场景,与reRTregular相比,reRTreduce和reRTvoxelwise将所有相关OAR的累积平均和接近最大值EQD2减少了约1-10Gy。reRTreduce的OAR剂量减少是以D98%=92.3%的扭曲剂量分布为代价的。HI=12.0%,CI=73.7%,对于最复杂的情况,正常组织热点≥150%,而reRTregular(D98%=98.1%,HI=3.2%,CI=94.2%)和reRTvoxelwise(D98%=96.9%,HI=6.1%,CI=93.7%)实现了无热点的PTV覆盖。
    结论:所提出的基于重新辐照的基于EQD2的优化函数引入了新颖的规划可能性,具有灵活的选项,以指导目标覆盖率和OAR之间的权衡,并基于EQD2deliv的体素适应惩罚水平。
    BACKGROUND: Although re-irradiation is increasingly used in clinical practice, almost no dedicated planning software exists.
    OBJECTIVE: Standard dose-based optimization functions were adjusted for re-irradiation planning using accumulated equivalent dose in 2-Gy fractions (EQD2) with rigid or deformable dose mapping, tissue-specific α/β, treatment-specific recovery coefficients, and voxelwise adjusted EQD2 penalization levels based on the estimated previously delivered EQD2 (EQD2deliv ).
    METHODS: To demonstrate proof-of-concept, 35 Gy in 5 fractions was planned to a fictitious spherical relapse planning target volume (PTV) in three separate locations following previous prostate treatment on a virtual human phantom. The PTV locations represented one repeated irradiation scenario and two re-irradiation scenarios. For each scenario, three re-planning strategies with identical PTV dose-functions but various organ at risk (OAR) EQD2-functions was used: 1) reRTregular : Regular functions with fixed EQD2 penalization levels larger than EQD2deliv for all OAR voxels. 2) reRTreduce : As reRTregular , but with lower fixed EQD2 penalization levels aiming to reduce OAR EQD2. 3) reRTvoxelwise : As reRTregular and reRTreduce , but with voxelwise adjusted EQD2 penalization levels based on EQD2deliv . PTV near-minimum and near-maximum dose (D98% /D2% ), homogeneity index (HI), conformity index (CI) and accumulated OAR EQD2 (α/β = 3 Gy) were evaluated.
    RESULTS: For the repeated irradiation scenario, all strategies resulted in similar dose distributions. For the re-irradiation scenarios, reRTreduce and reRTvoxelwise reduced accumulated average and near-maximum EQD2 by ˜1-10 Gy for all relevant OARs compared to reRTregular . The reduced OAR doses for reRTreduce came at the cost of distorted dose distributions with D98% = 92.3%, HI = 12.0%, CI = 73.7% and normal tissue hot spots ≥150% for the most complex scenario, while reRTregular (D98% = 98.1%, HI = 3.2%, CI = 94.2%) and reRTvoxelwise (D98%  = 96.9%, HI = 6.1%, CI = 93.7%) fulfilled PTV coverage without hot spots.
    CONCLUSIONS: The proposed re-irradiation-specific EQD2-based optimization functions introduce novel planning possibilities with flexible options to guide the trade-off between target coverage and OAR sparing with voxelwise adapted penalization levels based on EQD2deliv .
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Objective.不同的放射治疗(RT)策略,例如,常规分馏RT(CFRT),高分割RT(HFRT),立体定向体RT(SBRT),自适应RT,和再照射通常用于治疗头颈部(HN)癌症。组合和/或比较这些策略需要计算生物有效剂量(BED)。这项研究的目的是开发一种实用的过程来估计器官特异性放射生物学模型参数,该参数可用于HN癌症的个性化RT计划中的BED计算。方法。CFRT的临床剂量约束数据,HFRT和SBRT用于5个危险器官(OAR),即脊髓,脑干,臂丛神经,光学通路,从文献中获得的食管进行分析。这些临床数据对应于特定的终点。线性二次(LQ)和线性-二次线性(LQ-L)模型用于拟合这些临床数据并提取相关模型参数(α/β比,gamma/alpha,DTandBED)来自等有效曲线。使用获得的参数计算2Gy分数(EQD2)中等效物理剂量方面的剂量约束。主要结果。LQ-L和LQ模型很好地拟合了从CFRT到SBRT的临床数据,其中LQ-L代表了对大多数OAR的更好拟合。LQ-L(LQ)的α/β值为2.72(2.11)Gy,0.55(0.30)Gy,2.82(2.90)Gy,6.57(3.86)Gy,5.38(4.71)Gy,剂量约束EQD2为55.91(54.90)Gy,57.35(56.79)Gy,57.54(56.35)Gy,脊髓60.13(59.72)Gy和65.66(64.50)Gy,光学通路,脑干,臂丛神经,和食道,分别。另外两个LQ-L参数为5.24Gy,5.09Gy,7.00Gy,5.23Gy,和6.16Gy,γ/α分别为7.91、34.02、8.67、5.62和4.95。意义。开发了一种实用的方法来从临床数据中提取器官特异性放射生物学模型参数。所获得的参数可以用于基于生物的辐射规划,诸如计算不同分次方案的剂量约束。
    Objective.Different radiation therapy (RT) strategies, e.g. conventional fractionation RT (CFRT), hypofractionation RT (HFRT), stereotactic body RT (SBRT), adaptive RT, and re-irradiation are often used to treat head and neck (HN) cancers. Combining and/or comparing these strategies requires calculating biological effective dose (BED). The purpose of this study is to develop a practical process to estimate organ-specific radiobiologic model parameters that may be used for BED calculations in individualized RT planning for HN cancers.Approach.Clinical dose constraint data for CFRT, HFRT and SBRT for 5 organs at risk (OARs) namely spinal cord, brainstem, brachial plexus, optic pathway, and esophagus obtained from literature were analyzed. These clinical data correspond to a particular endpoint. The linear-quadratic (LQ) and linear-quadratic-linear (LQ-L) models were used to fit these clinical data and extract relevant model parameters (alpha/beta ratio, gamma/alpha,dTand BED) from the iso-effective curve. The dose constraints in terms of equivalent physical dose in 2 Gy-fraction (EQD2) were calculated using the obtained parameters.Main results.The LQ-L and LQ models fitted clinical data well from the CFRT to SBRT with the LQ-L representing a better fit for most of the OARs. The alpha/beta values for LQ-L (LQ) were found to be 2.72 (2.11) Gy, 0.55 (0.30) Gy, 2.82 (2.90) Gy, 6.57 (3.86) Gy, 5.38 (4.71) Gy, and the dose constraint EQD2 were 55.91 (54.90) Gy, 57.35 (56.79) Gy, 57.54 (56.35) Gy, 60.13 (59.72) Gy and 65.66 (64.50) Gy for spinal cord, optic pathway, brainstem, brachial plexus, and esophagus, respectively. Additional two LQ-L parametersdTwere 5.24 Gy, 5.09 Gy, 7.00 Gy, 5.23 Gy, and 6.16 Gy, and gamma/alpha were 7.91, 34.02, 8.67, 5.62 and 4.95.Significance.A practical process was developed to extract organ-specific radiobiological model parameters from clinical data. The obtained parameters can be used for biologically based radiation planning such as calculating dose constraints of different fractionation regimens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: English Abstract
    OBJECTIVE: Communicating the amount and effects of ionizing radiation to patients prior to an examination using x‑rays is associated with challenges: first, calculating the expected dose prior to the examination and, second, quantifying and illustrating cancer risks. Analogies, such as comparing radiation exposure to accident risks, have limitations and may evoke unease. This study explores and compares two new approaches to discuss radiation exposure from common clinical examinations with patients: effective dose and exposure based on radioactive potassium-40 intake from the ingestion of bananas, the banana equivalent dose (BED).
    METHODS: The effective doses of the diagnostic reference levels (DRL) for computed tomography (CT) and X-ray examinations in adults were calculated using mean conversion factors for specific anatomic body regions. For the BED calculation of the diagnostic reference levels, the radiation dose from a conventional banana ingested over 50 years per becquerel was calculated. The outcomes were juxtaposed against an equivalent number of bananas and its respective radiation doses.
    RESULTS: The calculated doses, namely effective dose and BED, of the German DRL can serve as a reliable metric to discuss radiation exposure from medical imaging with patients prior to an examination.
    CONCLUSIONS: This is the first study to calculate the effective doses of the current DRL and to compare these with the pseudoscientific unit BED. While the BED serves as an interesting illustration to metaphorize radiation exposure, it is recommended to use the calculated effective dose of the DRL as the basis for educational consultations with patients.
    UNASSIGNED: HINTERGRUND UND ZIEL: Patient*innen vor einer Untersuchung mit Röntgenstrahlung die Menge und Wirkung ionisierender Strahlung zu vermitteln, ist mit Herausforderungen verbunden: Zum einen ist es schwierig, die erwartete Dosis vor der Untersuchung zu berechnen, und zum anderen lässt sich das Krebsrisiko nicht einfach bemessen. Analogien wie der Vergleich der Strahlenexposition mit Unfallrisiken haben Limitationen und können Bedenken verursachen. Diese Studie vergleicht zwei Ansätze, um die Strahlenexposition klinischer Routineuntersuchungen Patient*innen näherzubringen: die effektive Dosis und die Strahlenexposition anhand der Aufnahme des radioaktiven Kalium-40 beim Verzehr von Bananen, die Bananenäquivalentdosis (BED).
    METHODS: Die effektiven Dosen der deutschen diagnostischen Referenzwerte (DRW) für die Computertomographie (CT) und Röntgenuntersuchungen bei Erwachsenen wurden mithilfe von mittleren Umrechnungsfaktoren für spezifische anatomische Körperregionen berechnet. Für die BED-Berechnung der DRW wurde die Strahlendosis beim Verzehr einer herkömmlichen Banane über 50 Jahre pro Becquerel berechnet. Die Ergebnisse wurden einer gleichwertigen Anzahl an Bananen und ihren jeweiligen Strahlendosen gegenübergestellt.
    UNASSIGNED: Die berechneten Dosen, d. h. effektive Dosis und BED, der deutschen DRW könnten als zuverlässige Kennzahl dienen, um mit Patient*innen vor einer Untersuchung über die Strahlenexposition durch die medizinische Bildgebung zu sprechen.
    UNASSIGNED: Dies ist die erste Studie, welche die effektiven Dosen der deutschen DRW berechnet und sie mit der pseudowissenschaftlichen Einheit BED vergleicht. Auch wenn die BED als interessante Veranschaulichung dient, empfehlen wir, die berechnete effektive Dosis der deutschen DRW als Grundlage für Aufklärungsgespräche mit Patient*innen zu verwenden.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号