Enzyme mechanisms

酶机制
  • 文章类型: Journal Article
    ChloorphensA和B是结构独特的非规范C17倍半萜类,来自绿藻假单胞菌,由两种SAM依赖性甲基转移酶和I型萜烯合酶制成。本研究在同位素标记实验和DFT计算中探讨了它们的形成机理。结果表明,环戊烷核心内的标记分布具有惊人的复杂性,环戊烷核心与氯oraphenA和B中的两个非环片段反向连接。观察到D2O吸收多达14个氘原子。这些发现可以通过重复的后期多步重排序列来解释。在立体选择性标记实验中阐明了氯芬及其生物合成中间体的绝对构型。
    Chlororaphens A and B are structurally unique non-canonical C17 sesquiterpenoids from Pseudomonas chlororaphis that are made by two SAM-dependent methyltransferases and a type I terpene synthase. This study addresses the mechanism of their formation in isotopic labelling experiments and DFT calculations. The results demonstrate an astonishing complexity with distribution of labellings within a cyclopentane core that is reversely connected to two acyclic fragments in chlororaphen A and B. In addition, the uptake of up to 14 deuterium atoms from D2O was observed. These findings are explainable by a repeated late stage multistep rearrangement sequence. The absolute configurations of the chlororaphens and their biosynthetic intermediates were elucidated in stereoselective labelling experiments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    从烟曲霉中鉴定出二萜合酶AfAS。其氨基酸序列和-根据结构模型-活性位点结构与fusicocca-2,10(14)-二烯合酶PaFS高度相似,但是AfAS产生了结构更复杂的二萜,具有新型的6-5-5-5四环骨架,称为asperfumene。通过同位素标记实验和DFT计算阐明了AfAS的环化机理。反应级联在其初始步骤中通过与PaFS级联类似的中间体进行,但随后通过不寻常的邻位去质子化-再质子化过程发散,该过程在通往独特的asperfumene骨架的台阶入口处引发骨骼重排。结构模型仅揭示了活性位点之间的一个主要差异:在AfAS中,PaFS残基F65被I65取代。有趣的是,使用两种二萜合酶进行的定点诱变实验表明,位置65可作为生物合成四环反香烯与结构上较不复杂的二萜的双向功能开关。
    The diterpene synthase AfAS was identified from Aspergillus fumigatiaffinis. Its amino acid sequence and-according to a structural model-active site architecture are highly similar to those of the fusicocca-2,10(14)-diene synthase PaFS, but AfAS produces a structurally much more complex diterpene with a novel 6-5-5-5 tetracyclic skeleton called asperfumene. The cyclisation mechanism of AfAS was elucidated through isotopic labelling experiments and DFT calculations. The reaction cascade proceeds in its initial steps through similar intermediates as for the PaFS cascade, but then diverges through an unusual vicinal deprotonation-reprotonation process that triggers a skeletal rearrangement at the entrance to the steps leading to the unique asperfumene skeleton. The structural model revealed only one major difference between the active sites: The PaFS residue F65 is substituted by I65 in AfAS. Intriguingly, site-directed mutagenesis experiments with both diterpene synthases revealed that position 65 serves as a bidirectional functional switch for the biosynthesis of tetracyclic asperfumene versus structurally less complex diterpenes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    萜烯生物合成的复杂机制属于天然产物化学中最具挑战性的问题。解决这些问题的方法包括萜烯合酶的基于结构的定点诱变,计算方法,和同位素标记实验。后一种方法在生物合成研究中有着悠久的传统,最近经历了复兴,在基因组测序后,能够快速获得生物合成基因和酶。今天,这允许一种组合方法,其中同位素标记的底物可以与重组萜合酶一起孵育。这些明确定义的反应设置可以为萜烯合酶催化的反应提供详细的机理见解,最近的发展大大加深了我们对萜烯生物合成的理解。本章将讨论最新技术,并介绍在萜烯合酶的机理研究中利用同位素标记的一些最重要的方法。
    The intricate mechanisms in the biosynthesis of terpenes belong to the most challenging problems in natural product chemistry. Methods to address these problems include the structure-based site-directed mutagenesis of terpene synthases, computational approaches, and isotopic labeling experiments. The latter approach has a long tradition in biosynthesis studies and has recently experienced a revival, after genome sequencing enabled rapid access to biosynthetic genes and enzymes. Today, this allows for a combined approach in which isotopically labeled substrates can be incubated with recombinant terpene synthases. These clearly defined reaction setups can give detailed mechanistic insights into the reactions catalyzed by terpene synthases, and recent developments have substantially deepened our understanding of terpene biosynthesis. This chapter will discuss the state of the art and introduce some of the most important methods that make use of isotopic labelings in mechanistic studies on terpene synthases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    最近报道的六种非规范C16倍半萜的生物合成以古希腊哲学家包括阿基米丁命名,亚里士多德,eratosthenene,毕发草,通过密度泛函理论(DFT)计算和同位素标记实验研究了α-民主烯和anaximandrene。结果表明,除了阿西米丁外,所有化合物都具有独特的片段重组机制,如先前在索多里芬生物合成中所证明的那样,除了一个显着的“舞蹈”机制为anaximandrene生物合成。
    The biosynthesis of six recently reported non-canonical C16 sesquiterpenoids named after ancient Greek philosophers, archimedene, aristotelene, eratosthenene, pythagorene, α-democritene and anaximandrene, was investigated through density functional theory (DFT) calculations and isotopic labeling experiments. The results revealed for all compounds except archimedene a unique fragmentation-recombination mechanism as previously demonstrated for sodorifen biosynthesis, in addition to a remarkable \"dancing\" mechanism for anaximandrene biosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    认识论,突变的非加性效应,可以提供对酶活性的组合改进,基本上超过单个突变的增益。然而,上位的分子机制仍然难以捉摸,破坏我们预测病原体进化和设计生物催化剂的能力。在这里,我们揭示了β-内酰胺酶的定向进化如何产生高度上位性活性增强。进化选择了四个突变,使抗生素抗性增加40倍,尽管它们的边际个体效应(≤2倍)。协同改进与超化学计量爆发动力学的引入相吻合,表明上位性植根于酶的构象动力学。我们的分析表明,上位性源于每个突变对催化循环的不同影响。最初的突变增加了蛋白质的灵活性和加速的底物结合,在野生型酶中是限速的。随后的突变主要通过微调底物相互作用来增强化学步骤。我们的工作确定了一个被忽视的原因:改变限速步骤可以导致实质性的协同作用,从而提高酶活性。
    Epistasis, the non-additive effect of mutations, can provide combinatorial improvements to enzyme activity that substantially exceed the gains from individual mutations. Yet the molecular mechanisms of epistasis remain elusive, undermining our ability to predict pathogen evolution and engineer biocatalysts. Here we reveal how directed evolution of a β-lactamase yielded highly epistatic activity enhancements. Evolution selected four mutations that increase antibiotic resistance 40-fold, despite their marginal individual effects (≤2-fold). Synergistic improvements coincided with the introduction of super-stochiometric burst kinetics, indicating that epistasis is rooted in the enzyme\'s conformational dynamics. Our analysis reveals that epistasis stemmed from distinct effects of each mutation on the catalytic cycle. The initial mutation increased protein flexibility and accelerated substrate binding, which is rate-limiting in the wild-type enzyme. Subsequent mutations predominantly boosted the chemical steps by fine-tuning substrate interactions. Our work identifies an overlooked cause for epistasis: changing the rate-limiting step can result in substantial synergy that boosts enzyme activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞色素P450(P450,CYP)19A1是类固醇芳香化酶,负责雄激素(雄烯二酮或睾酮)向雌激素的三步转化的酶。最后一步是通过历史上有争议的反应机理进行的C-C键断裂(以甲酸形式除去19-氧代基团)。两种相互竞争的机制可能性涉及过氧化铁阴离子(Fe3O2-,化合物0)和过铁氧基物种(FeO3,化合物I)。辨别每种物种在反应中的作用的一种方法是使用氧-18标记,即,从18O2和H218O的反应产物甲酸。我们应用了这种方法,使用几个技术改进,为了研究19-氧代雄烯二酮被人P45019A1和一种新型的类固醇的变形,3-氧代萘烷-4-烯-10-甲醛(ODEC),兔P4502B4。两种醛底物都对非酶酸催化的脱甲酰化敏感,产生19-去甲类固醇,并建立了条件以避免人为生成甲酸的问题。化合物0反应途径占主导地位(即,Fe3O2-)在19-氧代雄烯二酮的P45019A1氧化和ODEC的P4502B4氧化中。P45019A1结果与我们先前的结论(J.Am.Chem.Soc.2014,136,15016-16025),归因于一些技术修改。
    Cytochrome P450 (P450, CYP) 19A1 is the steroid aromatase, the enzyme responsible for the 3-step conversion of androgens (androstenedione or testosterone) to estrogens. The final step is C-C bond scission (removing the 19-oxo group as formic acid) that proceeds via a historically controversial reaction mechanism. The two competing mechanistic possibilities involve a ferric peroxide anion (Fe3+O2 -, Compound 0) and a perferryl oxy species (FeO3+, Compound I). One approach to discern the role of each species in the reaction is with the use of oxygen-18 labeling, i.e., from 18O2 and H2 18O of the reaction product formic acid. We applied this approach, using several technical improvements, to study the deformylation of 19-oxo-androstenedione by human P450 19A1 and of a model secosteroid, 3-oxodecaline-4-ene-10-carboxaldehyde (ODEC), by rabbit P450 2B4. Both aldehyde substrates were sensitive to non-enzymatic acid-catalyzed deformylation, yielding 19-norsteroids, and conditions were established to avoid issues with artifactual generation of formic acid. The Compound 0 reaction pathway predominated (i.e., Fe3+O2 -) in both P450 19A1 oxidation of 19-oxo-androstenedione and P450 2B4 oxidation of ODEC. The P450 19A1 results contrast with our prior conclusions (J. Am. Chem. Soc. 2014, 136, 15016-16025), attributed to several technical modifications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Retrons是毒素-抗毒素系统,可通过流产感染保护细菌免受噬菌体的侵害。Retron-Eco1抗毒素由逆转录酶(RT)和非编码RNA(ncRNA)/多拷贝单链DNA(msDNA)杂交体形成,可中和未表征的毒性效应子。然而,噬菌体防御的分子机制仍然未知。这里,我们表明,N-糖苷酶效应子,属于STIR超家族,在感染期间水解NAD+。冷冻电子显微镜(cryo-EM)分析表明,msDNA稳定了将效应子笼罩成低活性状态的细丝,其中ADPr,NAD+水解产物,共价连接至催化E106残基。缩短msDNA的突变诱导细丝分解和效应子的毒性,强调msDNA在免疫中的作用。此外,我们发现了一种噬菌体编码的Retron-Eco1抑制剂(U56),可以结合ADPr,强调retron系统和噬菌体进化之间复杂的相互作用。我们的工作概述了Retron-Eco1防御的结构基础,揭示ADPr在免疫中的关键作用。
    Retrons are toxin-antitoxin systems protecting bacteria against bacteriophages via abortive infection. The Retron-Eco1 antitoxin is formed by a reverse transcriptase (RT) and a non-coding RNA (ncRNA)/multi-copy single-stranded DNA (msDNA) hybrid that neutralizes an uncharacterized toxic effector. Yet, the molecular mechanisms underlying phage defense remain unknown. Here, we show that the N-glycosidase effector, which belongs to the STIR superfamily, hydrolyzes NAD+ during infection. Cryoelectron microscopy (cryo-EM) analysis shows that the msDNA stabilizes a filament that cages the effector in a low-activity state in which ADPr, a NAD+ hydrolysis product, is covalently linked to the catalytic E106 residue. Mutations shortening the msDNA induce filament disassembly and the effector\'s toxicity, underscoring the msDNA role in immunity. Furthermore, we discovered a phage-encoded Retron-Eco1 inhibitor (U56) that binds ADPr, highlighting the intricate interplay between retron systems and phage evolution. Our work outlines the structural basis of Retron-Eco1 defense, uncovering ADPr\'s pivotal role in immunity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    碳水化合物活性酶(CAZymes)负责生物合成,自然界中所有聚糖的修饰和降解。基因组和宏基因组方法学的进展,结合低成本的基因合成,提供了源源不断的新的CAZymes,既有完善的机制,也有新颖的机制。同时,越来越多的人使用低温电磁技术产生了令人兴奋的新结构,特别是各种跨膜糖基转移酶。这种改进的理解导致了CAZymes在不同领域的应用的广泛进展,包括治疗,器官移植,食物,和生物燃料。在这里,我们强调了最近在理解和应用CAZymes方面取得的许多重要进展中的一些。
    Carbohydrate-active enzymes (CAZymes) are responsible for the biosynthesis, modification and degradation of all glycans in Nature. Advances in genomic and metagenomic methodologies, in conjunction with lower cost gene synthesis, have provided access to a steady stream of new CAZymes with both well-established and novel mechanisms. At the same time, increasing access to cryo-EM has resulted in exciting new structures, particularly of transmembrane glycosyltransferases of various sorts. This improved understanding has resulted in widespread progress in applications of CAZymes across diverse fields, including therapeutics, organ transplantation, foods, and biofuels. Herein, we highlight a few of the many important advances that have recently been made in the understanding and applications of CAZymes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    酶对于地球上生命的出现和维持至关重要。它们在进化过程中如何具有催化活性仍然是一个悬而未决的问题。两种相反的解释似乎是合理的:在一系列离散步骤中获得一种机制,或者在单个进化事件中一次获得一种机制。这里,我们使用分子系统发育,祖先序列重建,和生化特性,以遵循一组专门的黄素蛋白单加氧酶的进化,细菌Baeyer-Villiger单加氧酶(BVMO)。这些酶催化复杂的化学反应依赖于三种不同的元素:还原的烟酰胺辅因子,双氧,和一个基底。祖先BVMO的表征表明,催化机理从FAD结合蛋白开始以一系列步骤发展,并进一步获得对参与反应的每个元素的反应性和特异性。一起,我们的工作结果描绘了一个内在复杂的催化机制是如何在进化过程中出现的。
    Enzymes are crucial for the emergence and sustenance of life on earth. How they became catalytically active during their evolution is still an open question. Two opposite explanations are plausible: acquiring a mechanism in a series of discrete steps or all at once in a single evolutionary event. Here, we use molecular phylogeny, ancestral sequence reconstruction, and biochemical characterization to follow the evolution of a specialized group of flavoprotein monooxygenases, the bacterial Baeyer-Villiger monooxygenases (BVMOs). These enzymes catalyze an intricate chemical reaction relying on three different elements: a reduced nicotinamide cofactor, dioxygen, and a substrate. Characterization of ancestral BVMOs shows that the catalytic mechanism evolved in a series of steps starting from a FAD-binding protein and further acquiring reactivity and specificity toward each of the elements participating in the reaction. Together, the results of our work portray how an intrinsically complex catalytic mechanism emerged during evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    开发了一种同位素标记方法来研究酮合酶的底物结合,例如参与杆菌烯生物合成的聚酮化合物合酶BaeJ的第二种酮合酶(BaeJ-KS2)。为此,两种对映体的13C-标记的N-乙酰半胱胺硫酯(SNAC酯)替代品的拟议的天然中间体BaeJ-KS2合成,包括谷氨酸脱羧酶的酶促步骤,并用BaeJ-KS2孵育。在各种对照实验的背景下,通过产物的13CNMR分析证明底物结合。
    An isotopic labelling method was developed to investigate substrate binding by ketosynthases, exemplified by the second ketosynthase of the polyketide synthase BaeJ involved in bacillaene biosynthesis (BaeJ-KS2). For this purpose, both enantiomers of a 13C-labelled N-acetylcysteamine thioester (SNAC ester) surrogate of the proposed natural intermediate of BaeJ-KS2 were synthesised, including an enzymatic step with glutamate decarboxylase, and incubated with BaeJ-KS2. Substrate binding was demonstrated through 13C NMR analysis of the products against the background of various control experiments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号