ER-phagy

ER - Phagy
  • 文章类型: Journal Article
    巨自噬/自噬是一种组成型活跃的分解代谢溶酶体降解途径,经常在人类疾病中发现失调。它通常被认为以细胞保护方式起作用,并且通常在经历应激的细胞中上调。其起始在蛋白质水平上被调节并且不需要从头蛋白质合成。历史上,自噬被认为是非选择性的;然而,现在很清楚,不同的刺激可以通过选择性自噬受体(SARs)导致细胞成分的选择性降解。由于其选择性的性质和多个降解途径的存在潜在的协同作用,自噬通量监测,即选择性自噬依赖性蛋白质降解,应该解决这种复杂性。这里,我们引入了一种靶向蛋白质组学方法,监测37种自噬相关蛋白的丰度变化,涵盖过程相关蛋白,如起始复合物和Atg8家族蛋白脂化机制,以及最知名的SARs。我们表明,与SARs相比,参与自噬体生物发生的蛋白质在自噬诱导条件下被上调并免于降解,以细胞系依赖的方式。经典的批量刺激,如营养饥饿主要诱导泛素依赖性可溶性SAR的降解,而不是泛素依赖性的降解,膜结合SAR。相比之下,用铁螯合剂去铁酮治疗会导致与线粒体自噬和网状吞噬/ER-吞噬相关的泛素依赖性和非依赖性SARs降解。我们的方法是自动化的,并支持大规模筛选测定,为(预)临床应用和监测特定自噬通量铺平了道路。
    Macroautophagy/autophagy is a constitutively active catabolic lysosomal degradation pathway, often found dysregulated in human diseases. It is often considered to act in a cytoprotective manner and is commonly upregulated in cells undergoing stress. Its initiation is regulated at the protein level and does not require de novo protein synthesis. Historically, autophagy has been regarded as non-selective; however, it is now clear that different stimuli can lead to the selective degradation of cellular components via selective autophagy receptors (SARs). Due to its selective nature and the existence of multiple degradation pathways potentially acting in concert, monitoring of autophagy flux, i.e. selective autophagy-dependent protein degradation, should address this complexity. Here, we introduce a targeted proteomics approach monitoring abundance changes of 37 autophagy-related proteins covering process-relevant proteins such as the initiation complex and the Atg8-family protein lipidation machinery, as well as most known SARs. We show that proteins involved in autophagosome biogenesis are upregulated and spared from degradation under autophagy-inducing conditions in contrast to SARs, in a cell-line dependent manner. Classical bulk stimuli such as nutrient starvation mainly induce degradation of ubiquitin-dependent soluble SARs and not of ubiquitin-independent, membrane-bound SARs. In contrast, treatment with the iron chelator deferiprone leads to the degradation of ubiquitin-dependent and -independent SARs linked to mitophagy and reticulophagy/ER-phagy. Our approach is automatable and supports large-scale screening assays paving the way to (pre)clinical applications and monitoring of specific autophagy flux.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    根据降解底物的类型,自噬分为非选择性或选择性。内质网(ER)-吞噬是选择性自噬的一种形式,用于将ER-驻留蛋白转运至自体溶酶体。FAM134B,具有序列相似性134的家族成员是众所周知的ER-吞噬受体。FAM134B的功能障碍导致几种疾病,包括病毒感染,炎症,神经退行性疾病和癌症,表明FAM134B在各种细胞内功能中起着至关重要的作用。然而,FAM134B介导的ER-phagy如何调节细胞内功能尚不清楚。在这项研究中,我们发现哺乳动物细胞中FAM134B敲低可加速细胞增殖。FAM134B敲低增加了STIM1的蛋白质量,STIM1是一种ERCa2传感器蛋白,介导了G1到S相转变中的存储操作的Ca2进入(SOCE)。FAM134B通过其C端胞质区域与STIM1结合。FAM134B敲除减少STIM1从ER到自体溶酶体的转运。最后,FAM134B敲除加速了G1向S期的转变。这些结果表明FAM134B可能通过ER-吞噬降解STIM1而参与细胞增殖。
    Autophagy is classified as nonselective or selective depending on the types of degrading substrates. Endoplasmic reticulum (ER)-phagy is a form of selective autophagy for transporting the ER-resident proteins to autolysosomes. FAM134B, a member of the family with sequence similarity 134, is a well-known ER-phagy receptor. Dysfunction of FAM134B results in several diseases including viral infection, inflammation, neurodegenerative disorder, and cancer, indicating that FAM134B has crucial roles in various kinds of intracellular functions. However, how FAM134B-mediated ER-phagy regulates intracellular functions is not well understood. In this study, we found that FAM134B knockdown in mammalian cells accelerated cell proliferation. FAM134B knockdown increased the protein amount of stromal interaction molecule 1 (STIM1), an ER Ca2+ sensor protein mediating the store-operated Ca2+ entry involved in G1 to S phase transition. FAM134B bound to STIM1 through its C-terminal cytosolic region. FAM134B knockdown reduced transport of STIM1 from the ER to autolysosomes. Finally, FAM134B knockdown accelerated G1 to S phase transition. These results suggest that FAM134B is involved in cell proliferation possibly through degradation of STIM1 via ER-phagy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    先兆子痫(PE)是一种威胁生命的妊娠特异性并发症,具有有争议的机制,除分娩外尚无有效的治疗方法。目前,越来越多的研究人员认为,PE与蛋白质错误折叠/聚集障碍具有共同的病理生理学特征,例如阿尔茨海默病(AD)。有证据表明,有缺陷的自噬是PE中蛋白质聚集的潜在来源。内质网选择性自噬(ER-phagy)在清除错误折叠的蛋白质和维持ER稳态中起关键作用。然而,其在PE的分子病理学中的作用尚不清楚。我们发现lncRNADUXAP8在先兆子痫胎盘中上调,并与临床指标显着相关。DUXAP8特异性结合PCBP2并抑制其泛素化介导的降解,PCBP2水平的降低逆转了DUXAP8过表达对AKT/mTOR信号通路的激活作用。功能实验表明,DUXAP8过表达抑制滋养细胞增殖,迁移,以及HTR-8/SVneo和JAR细胞的侵袭。此外,在DUXAP8过表达的HTR8/SVneo细胞和PE胎盘绒毛滋养层细胞中观察到肿胀和溶解ER(内质网)的病理积累,这表明ER清除能力受损。进一步的研究发现,DUXAP8过表达通过激活AKT/mTOR信号通路降低FAM134B和LC3II(参与ER-phagy的关键蛋白)表达,从而损害ER-phagy并引起蛋白聚集。FAM134B水平的升高显著逆转了DUXAP8过表达对细胞增殖的抑制作用,迁移,和滋养层的入侵。在体内,通过尾静脉注射DUXAP8过表达腺病毒在妊娠大鼠中诱导的PE样表型,并伴有激活的AKT/mTOR信号,胎盘组织中FAM134B和LC3-II蛋白表达降低,蛋白聚集增加。我们的研究揭示了lncRNADUXAP8在通过FAM134B介导的ER-吞噬调节滋养细胞生物学行为中的重要作用。为认识PE的发病机制提供了新的理论依据。
    Preeclampsia (PE) is a life-threatening pregnancy-specific complication with controversial mechanisms and no effective treatment except delivery is available. Currently, increasing researchers suggested that PE shares pathophysiologic features with protein misfolding/aggregation disorders, such as Alzheimer disease (AD). Evidences have proposed defective autophagy as a potential source of protein aggregation in PE. Endoplasmic reticulum-selective autophagy (ER-phagy) plays a critical role in clearing misfolded proteins and maintaining ER homeostasis. However, its roles in the molecular pathology of PE remain unclear. We found that lncRNA DUXAP8 was upregulated in preeclamptic placentae and significantly correlated with clinical indicators. DUXAP8 specifically binds to PCBP2 and inhibits its ubiquitination-mediated degradation, and decreased levels of PCBP2 reversed the activation effect of DUXAP8 overexpression on AKT/mTOR signaling pathway. Function experiments showed that DUXAP8 overexpression inhibited trophoblastic proliferation, migration, and invasion of HTR-8/SVneo and JAR cells. Moreover, pathological accumulation of swollen and lytic ER (endoplasmic reticulum) was observed in DUXAP8-overexpressed HTR8/SVneo cells and PE placental villus trophoblast cells, which suggesting that ER clearance ability is impaired. Further studies found that DUXAP8 overexpression impaired ER-phagy and caused protein aggregation medicated by reduced FAM134B and LC3II expression (key proteins involved in ER-phagy) via activating AKT/mTOR signaling pathway. The increased level of FAM134B significantly reversed the inhibitory effect of DUXAP8 overexpression on the proliferation, migration, and invasion of trophoblasts. In vivo, DUXAP8 overexpression through tail vein injection of adenovirus induced PE-like phenotypes in pregnant rats accompanied with activated AKT/mTOR signaling, decreased expression of FAM134B and LC3-II proteins and increased protein aggregation in placental tissues. Our study reveals the important role of lncRNA DUXAP8 in regulating trophoblast biological behaviors through FAM134B-mediated ER-phagy, providing a new theoretical basis for understanding the pathogenesis of PE.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    内质网的选择性自噬(ER-phagy)是降解受损的ER组分和防止细胞经历ER应激所必需的机制。各种ER-吞噬受体通过构建具有专用功能的蛋白质组件来协调该过程。为了理解ER-phagy的分子构建原理,重要的是揭示ER-吞噬受体在时间和功能背景下的组装。然而,直接可视化受到光学显微镜衍射极限的阻碍。超分辨率显微镜(SRM)可以绕过这一限制,解析细胞中的单个蛋白质和纳米级蛋白质簇。特别是,用于纳米级形貌成像的DNA点积累(DNA-PAINT)是一种强大的技术,可以解析细胞中的单个蛋白质簇并提供有关其分子组成的信息。这里,我们报告了如何利用DNA-PAINT对固定细胞中的ER-phagy受体进行超分辨率成像的分步方案.此外,我们提供了图像生成的详细解释,聚类分析,和分子定量。
    Selective autophagy of the endoplasmic reticulum (ER-phagy) is a mechanism that is necessary for degrading damaged ER components and preventing cells from experiencing ER stress. Various ER-phagy receptors orchestrate this process by building protein assemblies with dedicated functions. In order to understand the molecular building principles of ER-phagy, it is important to reveal the assembly of ER-phagy receptors in a temporal and functional context. However, direct visualization is hampered by the diffraction limit in light microscopy. Super-resolution microscopy (SRM) can bypass this limitation and resolve single proteins and nanoscale protein clusters in cells. In particular, DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) is a powerful technology that can resolve individual protein clusters in cells and provide information on their molecular composition. Here, we report a step-by-step protocol on how to utilize DNA-PAINT to perform super-resolution imaging of ER-phagy receptors in fixed cells. In addition, we provide a detailed explanation of image generation, cluster analysis, and molecular quantification.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    内质网(ER)是蛋白质合成的中心枢纽,折叠,和真核细胞中的脂质生物合成。维持ER稳态对于最佳细胞功能至关重要,一种引起关注的机制是内质网特异性自噬,或ER-phagy。ER-phagy选择性地去除特定的ER部分,在细胞健康和适应环境压力源中发挥关键作用。内质网吞噬可由多种细胞条件诱导,如氨基酸饥饿,ER质量控制机制的破坏,和错误折叠的内质网蛋白的积累,强调细胞适应性和内质网在应激反应中的重要性。ER-phagy受体的临床相关突变与各种疾病有关。强调ER-phagy在ER稳态中的根本重要性。这里,我们提供全面的方案和一般考虑,同时使用三种基本技术-Western印迹研究ER-phagy,免疫荧光,和流式细胞术-通常用于ER-phagy检测和定量。
    The endoplasmic reticulum (ER) serves as a central hub for protein synthesis, folding, and lipid biosynthesis in eukaryotic cells. Maintaining ER homeostasis is essential for optimal cellular function, and one mechanism that has garnered attention is endoplasmic reticulum-specific autophagy, or ER-phagy. ER-phagy selectively removes specific ER portions, playing a pivotal role in cellular health and adaptation to environmental stressors. ER-phagy can be induced by diverse cellular conditions such as amino acid starvation, disruption of ER quality control mechanisms, and accumulation of misfolded ER protein, highlighting cellular adaptability and the significance of ER-phagy in stress responses. Clinically relevant mutations in ER-phagy receptors are implicated in various diseases, underlining the fundamental importance of ER-phagy in ER homeostasis. Here, we provide comprehensive protocols and general considerations while investigating ER-phagy using three fundamental techniques-Western blotting, immunofluorescence, and flow cytometry-commonly used in ER-phagy detection and quantitation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    内质网(ER)内的蛋白质生物发生对于生物体功能至关重要。蛋白质折叠过程中的错误需要去除有缺陷的产物。ER相关蛋白降解和ER-吞噬靶向错误折叠蛋白用于蛋白酶体和溶酶体降解。对ER蛋白停滞缺陷的启动机制尚不清楚。通过研究小鼠原代细胞和患者样本作为ER贮积障碍(ERSD)的模型,我们表明,内质网内缺陷产物的积累触发了涉及SESTRIN2的反应,SESTRIN2是一种控制mTORC1信号传导的营养传感器。XBP1诱导的SESTRIN2抑制TFEB/TFE3的mTORC1磷酸化,使这些转录因子进入细胞核并与溶酶体基因一起上调ER-吞噬受体FAM134B。这种反应通过FAM134B-钙连蛋白复合物促进错误折叠蛋白的ER-吞噬。FAM134B的药理学诱导改善了ERSD中错误折叠蛋白的清除。我们的研究确定了营养信号和ER质量控制之间的相互作用,建议ERSD的治疗策略。
    Protein biogenesis within the endoplasmic reticulum (ER) is crucial for organismal function. Errors during protein folding necessitate the removal of faulty products. ER-associated protein degradation and ER-phagy target misfolded proteins for proteasomal and lysosomal degradation. The mechanisms initiating ER-phagy in response to ER proteostasis defects are not well understood. By studying mouse primary cells and patient samples as a model of ER storage disorders (ERSDs), we show that accumulation of faulty products within the ER triggers a response involving SESTRIN2, a nutrient sensor controlling mTORC1 signaling. SESTRIN2 induction by XBP1 inhibits mTORC1\'s phosphorylation of TFEB/TFE3, allowing these transcription factors to enter the nucleus and upregulate the ER-phagy receptor FAM134B along with lysosomal genes. This response promotes ER-phagy of misfolded proteins via FAM134B-Calnexin complex. Pharmacological induction of FAM134B improves clearance of misfolded proteins in ERSDs. Our study identifies the interplay between nutrient signaling and ER quality control, suggesting therapeutic strategies for ERSDs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    作为一种有效的替代铜(Cu)源,纳米铜(nano-Cu)已被广泛地添加到动物生产食品中。因此,有必要评估纳米铜暴露对生物健康风险的影响。最近,纳米铜的毒性作用已得到证实,但潜在的机制仍不清楚。这项研究揭示了纳米Cu对鸡肝细胞内质网自噬(ER-phagy)的影响,并进一步确定了Drp1及其下游基因FAM134B是纳米Cu诱导的肝毒性的关键调节因子。纳米Cu暴露可引起肝脏Cu离子过度积累和病理损伤,引发过度的线粒体裂变和线粒体相关膜(MAM)完整性损伤,并在体内和体外激活ER-吞噬。有趣的是,Drp1的敲除显著降低了纳米Cu诱导的FAM134B的表达。此外,纳米Cu暴露诱导的ATL3,CCPG1,SEC62,TEX264和LC3II/LC3I的表达水平通过抑制Drp1的表达而降低。同时,FAM134B的抑制通过下调ATL3,CCPG1,SEC62,TEX264和LC3II/LC3I的表达,有效减轻纳米Cu诱导的ER吞噬。总的来说,这些结果表明,Drp1介导的MAM完整性受损导致ER-吞噬作为一种新的分子机制参与调节纳米Cu诱导的肝毒性.这些发现为进一步研究纳米铜诱导肝毒性的机制提供了新思路。
    As an efficient alternative copper (Cu) source, copper nanoparticles (nano-Cu) have been widely supplemented into animal-producing food. Therefore, it is necessary to assess the effect of nano-Cu exposure on the biological health risk. Recently, the toxic effects of nano-Cu have been confirmed but the underlying mechanism remains unclear. This study reveals the impact of nano-Cu on endoplasmic reticulum autophagy (ER-phagy) in chicken hepatocytes and further identifies Drp1 and its downstream gene FAM134B as crucial regulators of nano-Cu-induced hepatotoxicity. Nano-Cu exposure can induce Cu ion overaccumulation and pathological injury in the liver, trigger excessive mitochondrial fission and mitochondria-associated membrane (MAM) integrity damage, and activate ER-phagy in vivo and in vitro. Interestingly, the knockdown of Drp1 markedly decreases the expression of FAM134B induced by nano-Cu. Furthermore, the expression levels of ATL3, CCPG1, SEC62, TEX264, and LC3II/LC3I induced by nano-Cu exposure are decreased by inhibiting the expression of Drp1. Simultaneously, the inhibition of FAM134B effectively alleviates nano-Cu-induced ER-phagy by downregulating the expression of ATL3, CCPG1, SEC62, TEX264, and LC3II/LC3I. Overall, these results suggest that Drp1-mediated impairment of MAM integrity leads to ER-phagy as a novel molecular mechanism involved in the regulation of nano-Cu-induced hepatotoxicity. These findings provide new ideas for future research on the mechanism of nano-Cu-induced hepatotoxicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    弓形虫,一种广泛存在的寄生虫,有能力感染温血脊椎动物中几乎任何有核细胞。据估计,全球约有20亿人感染了这种病原体。虽然大多数健康个体能有效控制寄生虫的复制,某些寄生虫可能逃避免疫反应,在大脑中建立囊肿,这些囊肿对免疫系统是难治性的,并且对现有药物具有抗性。因为它在大脑中的慢性持久性,寄生虫依赖于宿主细胞的营养,特别是氨基酸和脂类。因此,了解潜在的寄生虫如何在大脑中持续存在对于识别针对慢性形式的潜在药物靶标至关重要。当屏蔽在寄生虫液泡(PV)或囊肿中时,弓形虫利用宿主内质网(ER)代谢来维持其在大脑中的持久性,导致宿主神经改变。在这项研究中,我们证明弓形虫破坏宿主的内质网稳态,导致未折叠蛋白质在宿主ER内的积累。宿主通过启动称为ER-phagy的自噬途径来对抗这种压力,将未折叠的蛋白质分解成氨基酸,促进其回收利用。我们的发现揭示了弓形虫利用宿主ER和溶酶体途径的潜在机制,在感染期间提高营养水平。这些见解为弓形虫病的治疗提供了新的策略。
    目的:细胞内寄生虫利用多种机制来操纵细胞环境,使他们能够坚持在主机。弓形虫,单细胞寄生虫,具有感染温血脊椎动物几乎任何有核细胞的能力,包括全球近20亿人。不幸的是,现有的治疗方法和免疫反应并不能完全有效地消除寄生虫的慢性持续形式。这项研究表明,弓形虫诱导宿主的自噬途径,以提高感染细胞中的氨基酸水平。氨基酸的消耗,反过来,影响寄生虫慢性形式的持久性。重要的是,我们的研究确定了宿主内质网(ER)-吞噬在潜伏感染期间寄生虫在宿主体内的持续存在中的关键作用。
    Toxoplasma gondii, a widespread parasite, has the ability to infect nearly any nucleated cell in warm-blooded vertebrates. It is estimated that around 2 billion people globally have been infected by this pathogen. Although most healthy individuals can effectively control parasite replication, certain parasites may evade the immune response, establishing cysts in the brain that are refractory to the immune system and resistant to available drugs. For its chronic persistence in the brain, the parasite relies on host cells\' nutrients, particularly amino acids and lipids. Therefore, understanding how latent parasites persist in the brain is crucial for identifying potential drug targets against chronic forms. While shielded within parasitophorous vacuoles (PVs) or cysts, Toxoplasma exploits the host endoplasmic reticulum (ER) metabolism to sustain its persistence in the brain, resulting in host neurological alterations. In this study, we demonstrate that T. gondii disrupts the host ER homeostasis, resulting in the accumulation of unfolded protein within the host ER. The host counters this stress by initiating an autophagic pathway known as ER-phagy, which breaks down unfolded proteins into amino acids, promoting their recycling. Our findings unveil the underlying mechanisms employed by T. gondii to exploit host ER and lysosomal pathways, enhancing nutrient levels during infection. These insights provide new strategies for the treatment of toxoplasmosis.
    OBJECTIVE: Intracellular parasites employ several mechanisms to manipulate the cellular environment, enabling them to persist in the host. Toxoplasma gondii, a single-celled parasite, possesses the ability to infect virtually any nucleated cell of warm-blooded vertebrates, including nearly 2 billion people worldwide. Unfortunately, existing treatments and immune responses are not entirely effective in eliminating the chronic persisting forms of the parasite. This study reveals that T. gondii induces the host\'s autophagic pathway to boost amino acid levels in infected cells. The depletion of amino acids, in turn, influences the persistence of the parasite\'s chronic forms. Significantly, our investigation establishes the crucial role of host endoplasmic reticulum (ER)-phagy in the parasite\'s persistence within the host during latent infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    内质网(ER)是协调关键细胞功能如蛋白质折叠和脂质生物合成的重要细胞器。然而,它对导致ER应激的干扰高度敏感。作为回应,未折叠的蛋白质反应(UPR)激活以恢复ER稳态,主要通过三个传感器:IRE1,ATF6和PERK。ERAD和自噬在缓解内质网压力方面至关重要,然而,它们的失调会导致错误折叠蛋白质的积累。顺铂,一种常用的化疗药物,在肿瘤细胞中诱导ER应激,激活复杂的信号通路。对顺铂的耐药性源于减少的药物积累,激活DNA修复,和抗凋亡机制。值得注意的是,顺铂诱导的内质网应激可以对肿瘤细胞产生双重影响,促进生存或凋亡,取决于上下文。ERAD对于降解错误折叠的蛋白质至关重要,而自噬可以保护细胞免受凋亡或增强内质网应激诱导的凋亡。ER应激之间的复杂相互作用,顺铂耐药,ERAD,自噬为癌症治疗开辟了新的途径。了解这些过程可能会导致克服化学抗性的创新策略,可能改善以顺铂为基础的癌症治疗的结局。这篇全面的综述为内质网应激的复杂机制提供了多方面的视角,顺铂耐药,以及它们对癌症治疗的影响。
    The endoplasmic reticulum (ER) is a crucial organelle that orchestrates key cellular functions like protein folding and lipid biosynthesis. However, it is highly sensitive to disturbances that lead to ER stress. In response, the unfolded protein response (UPR) activates to restore ER homeostasis, primarily through three sensors: IRE1, ATF6, and PERK. ERAD and autophagy are crucial in mitigating ER stress, yet their dysregulation can lead to the accumulation of misfolded proteins. Cisplatin, a commonly used chemotherapy drug, induces ER stress in tumor cells, activating complex signaling pathways. Resistance to cisplatin stems from reduced drug accumulation, activation of DNA repair, and anti-apoptotic mechanisms. Notably, cisplatin-induced ER stress can dualistically affect tumor cells, promoting either survival or apoptosis, depending on the context. ERAD is crucial for degrading misfolded proteins, whereas autophagy can protect cells from apoptosis or enhance ER stress-induced apoptosis. The complex interaction between ER stress, cisplatin resistance, ERAD, and autophagy opens new avenues for cancer treatment. Understanding these processes could lead to innovative strategies that overcome chemoresistance, potentially improving outcomes of cisplatin-based cancer treatments. This comprehensive review provides a multifaceted perspective on the complex mechanisms of ER stress, cisplatin resistance, and their implications in cancer therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:肿瘤微环境中的快速增殖和营养饥饿对细胞蛋白质稳态提出了重大挑战。内质网腔中错误折叠的蛋白质的积累诱导对细胞的应激,并且如果未解决则对细胞造成不可逆的损伤。新兴报道强调肿瘤微环境对治疗分子功效和治疗结果的影响。因此,我们旨在了解他莫昔芬对乳腺癌细胞代谢应激过程中细胞对内质网应激适应的影响。
    方法:营养剥夺诱导内质网应激(ER应激),通过硫黄素B测定和蛋白质印迹证实了乳腺癌细胞中的未折叠蛋白反应(UPR)。使用MCD测定法研究了他莫昔芬掺入的ER-phagy,共聚焦显微镜,和西方印迹。
    结果:营养剥夺诱导乳腺癌细胞内质网应激。有趣的是,他莫昔芬通过增强选择性内质网吞噬调节营养剥夺诱导的内质网应激,专门的自噬。他莫昔芬诱导的ER-吞噬由AMPK激活介导。AMPK的药理学抑制阻断了他莫昔芬诱导的内质网吞噬和他莫昔芬对营养剥夺期间内质网应激的调节作用。
    结论:他莫昔芬通过AMPK诱导内质网吞噬来调节内质网应激,因此,可能支持乳腺癌细胞在营养剥夺条件下存活。
    OBJECTIVE: Rapid proliferation and nutrition starvation in the tumor microenvironment pose significant challenges to cellular protein homeostasis. The accumulation of misfolded proteins in the endoplasmic reticulum lumen induces stress on cells and causes irreversible damage to cells if unresolved. Emerging reports emphasize the influence of the tumor microenvironment on therapeutic molecule efficacy and treatment outcomes. Hence, we aimed to understand the influence of tamoxifen on the cellular adaptation to endoplasmic reticulum stress during metabolic stress in breast cancer cells.
    METHODS: Nutrition deprivation induces endoplasmic reticulum stress (ER stress), and the unfolded protein response (UPR) in breast cancer cells was confirmed by a Thioflavin B assay and western blotting. Tamoxifen-indued ER-phagy was studied using an MCD assay, confocal microscopy, and western blotting.
    RESULTS: Nutrition deprivation induces ER stress in breast cancer cells. Interestingly, tamoxifen modulates the nutrition deprivation-induced endoplasmic reticulum stress through enhancing the selective ER-phagy, a specialized autophagy. The tamoxifen-induced ER-phagy is mediated by AMPK activation. The pharmacological inhibition of AMPK blocks tamoxifen-induced ER-phagy and tamoxifen modulatory effect on ER stress during nutrition deprivation.
    CONCLUSIONS: Tamoxifen modulates ER stress by inducing ER-phagy through AMPK, thereby, may support breast cancer cell survival during nutrition deprivation conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号