EF-Ts

  • 文章类型: Journal Article
    靶向翻译因子蛋白有望开发创新的抗结核药物。在蛋白质翻译过程中,许多因素导致核糖体在信使RNA(mRNA)处停滞。为了维持蛋白质的稳态,细菌已经进化出各种核糖体拯救机制,包括主要的翻译过程,释放停滞的核糖体并去除异常的mRNA。拯救系统需要翻译延伸因子蛋白(EF)的参与,并且对于细菌生理和繁殖至关重要。然而,它们在真核进化过程中消失,这使得必需蛋白和翻译延伸因子有望成为抗菌药物的靶点。这里,我们综述了翻译延伸因子EF-Tu的结构和分子机制,EF-Ts,和EF-G,在结核分枝杆菌(Mtb)的正常翻译和核糖体拯救机制中起着至关重要的作用。我们还简要描述了基于结构的,计算机辅助抗结核药物研究。
    Targeting translation factor proteins holds promise for developing innovative anti-tuberculosis drugs. During protein translation, many factors cause ribosomes to stall at messenger RNA (mRNA). To maintain protein homeostasis, bacteria have evolved various ribosome rescue mechanisms, including the predominant trans-translation process, to release stalled ribosomes and remove aberrant mRNAs. The rescue systems require the participation of translation elongation factor proteins (EFs) and are essential for bacterial physiology and reproduction. However, they disappear during eukaryotic evolution, which makes the essential proteins and translation elongation factors promising antimicrobial drug targets. Here, we review the structural and molecular mechanisms of the translation elongation factors EF-Tu, EF-Ts, and EF-G, which play essential roles in the normal translation and ribosome rescue mechanisms of Mycobacterium tuberculosis (Mtb). We also briefly describe the structure-based, computer-assisted study of anti-tuberculosis drugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Hsp33, a prokaryotic redox-regulated holding chaperone, has been recently identified to be able to exhibit an unfoldase and aggregase activity against elongation factor Tu (EF-Tu) in its reduced state. In this study, we investigated the effect of elongation factor Ts (EF-Ts) and trigger factor (TF) on Hsp33-mediated EF-Tu unfolding and aggregation using gel filtration, light scattering, circular dichroism, and isothermal titration calorimetry. We found that EF-Tu unfolding and subsequent aggregation induced by Hsp33 were evident even in its complex state with EF-Ts, which enhanced EF-Tu stability. In addition, although TF alone had no substantial effect on the stability of EF-Tu, it markedly amplified the Hsp33-mediated EF-Tu unfolding and aggregation. Collectively, the present results constitute the first example of synergistic unfoldase/aggregase activity of molecular chaperones and suggest that the stability of EF-Tu is modulated by a sophisticated network of molecular chaperones to regulate protein biosynthesis in cells under stress conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Embryogenesis is a critical developmental process that establishes the body organization of higher plants. During this process, the biogenesis of chloroplasts from proplastids is essential. A failure in chloroplast development during embryogenesis can cause morphologically abnormal embryos or embryonic lethality. In this study, we isolated a T-DNA insertion mutant of the Arabidopsis gene EMBRYO DEFECTIVE 2726 (EMB2726). Heterozygous emb2726 seedlings produced about 25% albino seeds with embryos that displayed defects at the 32-cell stage and that arrested development at the late globular stage. EMB2726 protein was localized in chloroplasts and was expressed at all stages of development, such as embryogenesis. Moreover, the two translation elongation factor Ts domains within the protein were critical for its function. Transmission electron microscopy revealed that the cells in emb2726 embryos contained undifferentiated proplastids and that the expression of plastid genome-encoded photosynthesis-related genes was dramatically reduced. Expression studies of DR5:GFP, pDRN:DRN-GFP, and pPIN1:PIN1-GFP reporter lines indicated normal auxin biosynthesis but altered polar auxin transport. The expression of pSHR:SHR-GFP and pSCR:SCR-GFP confirmed that procambium and ground tissue precursors were lacking in emb2726 embryos. The results suggest that EMB2726 plays a critical role during Arabidopsis embryogenesis by affecting chloroplast development, possibly by affecting the translation process in plastids.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号