E prostanoid receptor

E 类前列腺素受体
  • 文章类型: Journal Article
    Prostaglandin E 2 (PGE2), which is the most abundant prostaglandin produced in hepatocellular carcinoma (HCC), may be involved in hepatocarcinogenesis. Here, the amount of PGE2 was significantly increased in HCC tissue and adjacent noncancerous tissues relative to normal liver tissue (P<.001). In addition, the expression of EP2 receptor was considerably upregulated in HCC tissue compared with the expression of EP1 (P<.05), EP3 (P<.01), and EP4 (P<.01) receptor. The expression of EP2 receptor was positively correlated with the level of PGE2 in HCC tissue (P<.001). Furthermore, PGE2 significantly increased proliferation and invasion potential of human HCC cells. However, antagonism of EP2 signaling suppressed PGE2-induced growth and invasion in human HCC cells. Taken together, upregulation of PGE2 level was associated with proliferation and invasion potential of HCC, and EP2 receptor predominately mediated the function of PGE2 in the transformation and progression of HCC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:吸入前列腺素(PG)E2可能会抑制哮喘反应,但所涉及的机制仍未定义。
    目的:我们试图表征PGE2对人类小气道的直接和间接影响,特别涉及介导反应的受体。
    方法:在内径为1mm或更小的分离的人支气管中研究了收缩和松弛。
    结果:低浓度的PGE2(0.01-1μmol/L)使组胺预收缩的支气管松弛。支气管扩张剂反应被E类前列腺素(EP)亚型4受体拮抗剂ONO-AE3-208抑制,但不受EP2受体拮抗剂PF-04418948的影响。较高浓度的PGE2(10-100μmol/L)使小气道收缩。然而,TP受体激动剂U-46,619,PGF2α,PGD2比PGE2更有效。此外,支气管收缩对PGE2和所有其他测试的前列腺素的反应,包括EP1/EP3受体激动剂17-苯基trinorPGE2和部分FP受体激动剂AL-8810,均被TP受体拮抗剂SQ-29,548消除。在TP和EP4拮抗剂的存在下,PGE2抑制由抗IgE攻击引起的肥大细胞介导的支气管收缩。测量组胺和半胱氨酰白三烯的释放证明PGE2的这种支气管保护作用是由EP2受体介导的。与支气管扩张无关,并随着暴露时间的增加而增加。
    结论:PGE2在人小气道中的药理学不同于其在动物模型中的谱。这种强有力的EP2受体介导的抑制人气道中IgE依赖性收缩的首次证明为哮喘的治疗引入了新的选择性靶标。在阿司匹林加重的呼吸道疾病患者中,这种EP2对肥大细胞介导的支气管收缩的控制可能被夸大了。
    BACKGROUND: Inhaled prostaglandin (PG) E2 might inhibit asthmatic responses, but the mechanisms involved remain undefined.
    OBJECTIVE: We sought to characterize the direct and indirect effects of PGE2 on human small airways with particular reference to the receptors mediating the responses.
    METHODS: Contraction and relaxation were studied in isolated human bronchi with an inner diameter of 1 mm or less.
    RESULTS: Low concentrations of PGE2 (0.01-1 μmol/L) relaxed the bronchi precontracted by histamine. The bronchodilator response was inhibited by the E prostanoid (EP) subtype 4 receptor antagonist ONO-AE3-208 but unaffected by the EP2 receptor antagonist PF-04418948. Higher concentrations of PGE2 (10-100 μmol/L) contracted the small airways. However, the TP receptor agonists U-46,619, PGF2α, and PGD2 were more potent than PGE2. Moreover, the bronchoconstrictor responses to PGE2 and all other tested prostanoids, including the EP1/EP3 receptor agonist 17-phenyl trinor PGE2 and the partial FP receptor agonist AL-8810, were uniformly abolished by the TP receptor antagonist SQ-29,548. In the presence of TP and EP4 antagonists, PGE2 inhibited the mast cell-mediated bronchoconstriction resulting from anti-IgE challenge. Measurement of the release of histamine and cysteinyl leukotrienes documented that this bronchoprotective action of PGE2 was mediated by the EP2 receptor, unrelated to bronchodilation, and increased with time of exposure.
    CONCLUSIONS: The pharmacology of PGE2 in isolated human small airways was different from its profile in animal models. This first demonstration of powerful EP2 receptor-mediated inhibition of IgE-dependent contractions in human airways introduces a new selective target for the treatment of asthma. This EP2 control of mast cell-mediated bronchoconstriction is presumably exaggerated in patients with aspirin-exacerbated respiratory disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    OBJECTIVE: Interleukin 6 (IL-6) and IL-8 participate in the pathogenesis of chronic rhinosinusitis with nasal polyps, and their levels are increased by prostaglandin E2 (PGE2) in different cell types. The purposes of this study were to determine whether PGE2 has any effect on the increase in the levels of IL-6 and IL-8 in nasal polyp-derived fibroblasts (NPDFs) and subsequently investigate the possible mechanism of this effect.
    METHODS: Different concentrations of PGE2 were used to stimulate NPDFs at different time intervals. NPDFs were treated with agonists and antagonists of E prostanoid (EP) receptors. To determine the signaling pathway for the expression of PGE2-induced IL-6 and IL-8, PGE2 was treated with Akt and NF-κB inhibitors in NPDFs. Reverse transcription-polymerase chain reaction for IL-6 and IL-8 mRNAs was performed. IL-6 and IL-8 levels were measured byenzyme-linked immunosorbent assay (ELISA). The activation of Akt and NF-κB was evaluated by western blot analysis.
    RESULTS: PGE2 significantly increased the mRNA and protein expression levels of IL-6 and IL-8 in NPDFs. The EP2 and EP4 agonists and antagonists induced and inhibited IL-6 expression. However, the EP4 agonist and antagonist were only observed to induce and inhibit IL-8 expression level. The Akt and NF-κB inhibitors significantly blocked PGE2-induced expression of IL-6 and IL-8.
    CONCLUSIONS: PGE2 increases IL-6 expression via EP2 and EP4 receptors, and IL-8 expression via the EP4 receptor in NPDFs. It also activates the Akt and NF-κB signal pathways for the production of IL-6 and IL-8 in NPDFs. These results suggest that signaling pathway for IL-6 and IL-8 expression induced by PGE2 might be a useful therapeutic target for the treatment of nasal polyposis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    We investigated the prostaglandin (PG)E2 pathway in human abdominal aortic aneurysm (AAA) and its relationship with hypervascularization. We analyzed samples from patients undergoing AAA repair in comparison with those from healthy multiorgan donors. Patients were stratified according to maximum aortic diameter: low diameter (LD) (<55 mm), moderate diameter (MD) (55-69.9 mm), and high diameter (HD) (≥70 mm). AAA was characterized by abundant microvessels in the media and adventitia with perivascular infiltration of CD45-positive cells. Like endothelial cell markers, cyclooxygenase (COX)-2 and the microsomal isoform of prostaglandin E synthase (mPGES-1) transcripts were increased in AAA (4.4- and 1.4-fold, respectively). Both enzymes were localized in vascular cells and leukocytes, with maximal expression in the LD group, whereas leukocyte markers display a maximum in the MD group, suggesting that the upregulation of COX-2/mPGES-1 precedes maximal leukocyte infiltration. Plasma and in vitro tissue secreted levels of PGE2 metabolites were higher in AAA than in controls (plasma-controls, 19.9 ± 2.2; plasma-AAA, 38.8 ± 5.5 pg/ml; secretion-normal aorta, 16.5 ± 6.4; secretion-AAA, 72.9 ± 6.4 pg/mg; mean ± SEM). E-prostanoid receptor (EP)-2 and EP-4 were overexpressed in AAA, EP-4 being the only EP substantially expressed and colocalized with mPGES-1 in the microvasculature. Additionally, EP-4 mediated PGE2-induced angiogenesis in vitro. We provide new data concerning mPGES-1 expression in human AAA. Our findings suggest the potential relevance of the COX-2/mPGES-1/EP-4 axis in the AAA-associated hypervascularization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    骨关节炎困扰着全世界数百万人,导致生活质量受损和健康成本增加。为了了解这种疾病,医生一直在研究危险因素,比如遗传易感性,老化,肥胖,和关节不正;然而,无法最终确定直接病因。目前的治疗选择是短期或无效的,并且不能解决与软骨变性和关节炎关节中疼痛的诱导有关的病理生理学和生物化学机制。OA疼痛涉及复杂的感觉整合,情感,和认知过程,整合各种异常的细胞机制在外周和中枢(脊髓和脊柱上)的神经系统水平通过研究人员检查,生长因子和细胞因子的作用在检查它们对关节软骨稳态以及骨关节炎和骨关节炎相关疼痛的发展的影响方面变得越来越重要。参与体外软骨降解和伤害性刺激的分解代谢因子包括IL-1,IL-6,TNF-α,PGE2,FGF-2和PKCδ,和这些介质的药物抑制剂,以及RSV和LfcinB等化合物,将来可能会用作生物治疗。这篇综述探讨了几种参与OA和疼痛的生化介质,并为理解未来退行性关节疾病的潜在生物疗法提供了框架。
    Osteoarthritis afflicts millions of individuals across the world resulting in impaired quality of life and increased health costs. To understand this disease, physicians have been studying risk factors, such as genetic predisposition, aging, obesity, and joint malalignment; however have been unable to conclusively determine the direct etiology. Current treatment options are short-term or ineffective and fail to address pathophysiological and biochemical mechanisms involved with cartilage degeneration and the induction of pain in arthritic joints. OA pain involves a complex integration of sensory, affective, and cognitive processes that integrate a variety of abnormal cellular mechanisms at both peripheral and central (spinal and supraspinal) levels of the nervous system Through studies examined by investigators, the role of growth factors and cytokines has increasingly become more relevant in examining their effects on articular cartilage homeostasis and the development of osteoarthritis and osteoarthritis-associated pain. Catabolic factors involved in both cartilage degradation in vitro and nociceptive stimulation include IL-1, IL-6, TNF-α, PGE2, FGF-2 and PKCδ, and pharmacologic inhibitors to these mediators, as well as compounds such as RSV and LfcinB, may potentially be used as biological treatments in the future. This review explores several biochemical mediators involved in OA and pain, and provides a framework for the understanding of potential biologic therapies in the treatment of degenerative joint disease in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号