Dynamic trajectory radiotherapy

  • 文章类型: Journal Article
    目的:动态轨迹放射治疗(DTRT)和动态混合束电弧治疗(DYMBARC)利用非共面性,对于DYMBARC,同时优化光子和电子束。对于电子场,考虑交付过程中设置不确定性的余量概念定义不明确。我们为DTRT和DYMBARC开发了鲁棒优化,并比较了两种技术和四种情况下优化策略的剂量测定计划质量和鲁棒性。 方法。病例针对不同的治疗部位和临床目标体积(CTV)到计划目标体积(PTV)的边缘,m,被调查了。动态机架-台-准直器光子路径进行了优化,以最大程度地减少PTV/危险器官(OAR)在光束眼视图中的重叠,并最大程度地减少潜在的光子多叶准直器(MLC)传播。对于DYMBARC计划,添加了具有缩短的源至表面距离(80厘米)的非等中心部分电子弧或静态场。直接孔径优化(DAO)用于同时优化光子和电子束的基于MLC的强度调制,从而产生可交付的基于PTV的DTRT和DYMBARC计划。稳健优化计划使用相同的路径/弧/场。具有随机规划的DAO用于在所有平移方向和幅度δ上具有相等权重的设置不确定性,使得m=0.7δ。稳健分析考虑了所有方向上的随机误差,在相邻OAR的最差3D方向上有或没有额外的系统误差。 主要结果。取决于情况和DYMBARC的优化策略,电子贡献为目标剂量的7%-41%。所有技术在标称(无错误)情况下实现了类似的CTV覆盖。与DTRT计划相比,DYMBARC计划中的OAR节省总体上更好,而DYMBARC计划通常对所考虑的不确定性更为稳健。基于PTV的OAR节约比与目标体积相邻或重叠的OAR的稳健优化计划更好,但更受不确定性影响。 意义。与裕度相比,通过鲁棒优化可以实现更好的计划鲁棒性。将电子弧/场与非共面光子轨迹组合进一步提高了鲁棒性和OAR节省。
    Objective.Dynamic trajectory radiotherapy (DTRT) and dynamic mixed-beam arc therapy (DYMBARC) exploit non-coplanarity and, for DYMBARC, simultaneously optimized photon and electron beams. Margin concepts to account for set-up uncertainties during delivery are ill-defined for electron fields. We develop robust optimization for DTRT&DYMBARC and compare dosimetric plan quality and robustness for both techniques and both optimization strategies for four cases.Approach.Cases for different treatment sites and clinical target volume (CTV) to planning target volume (PTV) margins,m, were investigated. Dynamic gantry-table-collimator photon paths were optimized to minimize PTV/organ-at-risk (OAR) overlap in beam\'s-eye-view and minimize potential photon multileaf collimator (MLC) travel. For DYMBARC plans, non-isocentric partial electron arcs or static fields with shortened source-to-surface distance (80 cm) were added. Direct aperture optimization (DAO) was used to simultaneously optimize MLC-based intensity modulation for both photon and electron beams yielding deliverable PTV-based DTRT&DYMBARC plans. Robust-optimized plans used the same paths/arcs/fields. DAO with stochastic programming was used for set-up uncertainties with equal weights in all translational directions and magnitudeδsuch thatm= 0.7δ. Robust analysis considered random errors in all directions with or without an additional systematic error in the worst 3D direction for the adjacent OARs.Main results.Electron contribution was 7%-41% of target dose depending on the case and optimization strategy for DYMBARC. All techniques achieved similar CTV coverage in the nominal (no error) scenario. OAR sparing was overall better in the DYMBARC plans than in the DTRT plans and DYMBARC plans were generally more robust to the considered uncertainties. OAR sparing was better in the PTV-based than in robust-optimized plans for OARs abutting or overlapping with the target volume, but more affected by uncertainties.Significance.Better plan robustness can be achieved with robust optimization than with margins. Combining electron arcs/fields with non-coplanar photon trajectories further improves robustness and OAR sparing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    与体积电弧疗法(VMAT)相比,动态轨迹放射治疗(DTRT)已被证明可以改善健康组织的保护。这项研究旨在评估和比较头颈部(H&N)癌症的DTRT和VMAT治疗计划对患者设置(PS)和机器定位不确定性的鲁棒性。
    以前为46个H&N案例创建的DTRT和VMAT计划的稳健性,规定50-70Gy至计划目标量的95%,被评估。为此,使用蒙特卡罗重新计算剂量分布,包括PS(平移和旋转)和机器定位(gantry-,表-,准直器旋转和多叶准直器(MLC))。通过不确定因素对口干症和吞咽困难的正常组织并发症概率(NTCP)和剂量体积终点的影响来评估计划的稳健性。使用Wilcoxon配对符号秩检验(α=5%)比较DTRT和VMAT计划稳健性之间的差异。
    在名义情况下,中度至重度口干症和≥II级吞咽困难的平均NTCP低于VMAT(0.5%,p=0.01;2.1%,p<0.01),对于所有调查的不确定性,除了MLC定位,差异不显著。对于旋转PS(≤3°)和机器定位(≤2°)不确定性,与标称情况相比的平均差异≤3.5Gy,对于平移PS不确定性(≤5mm),<7Gy,对于MLC定位不确定性(≤5mm),<20Gy。
    DTRT和VMAT计划对所研究的不确定性的鲁棒性取决于目标感兴趣结构的不确定性方向和位置。即使考虑到不确定性,DTRT的NTCP平均仍低于VMAT。
    UNASSIGNED: Dynamic trajectory radiotherapy (DTRT) has been shown to improve healthy tissue sparing compared to volumetric arc therapy (VMAT). This study aimed to assess and compare the robustness of DTRT and VMAT treatment-plans for head and neck (H&N) cancer to patient-setup (PS) and machine-positioning uncertainties.
    UNASSIGNED: The robustness of DTRT and VMAT plans previously created for 46 H&N cases, prescribed 50-70 Gy to 95 % of the planning-target-volume, was assessed. For this purpose, dose distributions were recalculated using Monte Carlo, including uncertainties in PS (translation and rotation) and machine-positioning (gantry-, table-, collimator-rotation and multi-leaf collimator (MLC)). Plan robustness was evaluated by the uncertainties\' impact on normal tissue complication probabilities (NTCP) for xerostomia and dysphagia and on dose-volume endpoints. Differences between DTRT and VMAT plan robustness were compared using Wilcoxon matched-pair signed-rank test (α = 5 %).
    UNASSIGNED: Average NTCP for moderate-to-severe xerostomia and grade ≥ II dysphagia was lower for DTRT than VMAT in the nominal scenario (0.5 %, p = 0.01; 2.1 %, p < 0.01) and for all investigated uncertainties, except MLC positioning, where the difference was not significant. Average differences compared to the nominal scenario were ≤ 3.5 Gy for rotational PS (≤ 3°) and machine-positioning (≤ 2°) uncertainties, <7 Gy for translational PS uncertainties (≤ 5 mm) and < 20 Gy for MLC-positioning uncertainties (≤ 5 mm).
    UNASSIGNED: DTRT and VMAT plan robustness to the investigated uncertainties depended on uncertainty direction and location of the structure-of-interest to the target. NTCP remained on average lower for DTRT than VMAT even when considering uncertainties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们比较了46例头颈部癌症病例的动态轨迹放射治疗(DTRT)与最先进的体积调制电弧治疗(VMAT)。DTRT对唾液腺和吞咽结构的剂量较低,与VMAT相比,预测口干症和吞咽困难较低。DTRT可在C臂直线加速器上交付,具有高剂量精度。
    We compared dynamic trajectory radiotherapy (DTRT) to state-of-the-art volumetric modulated arc therapy (VMAT) for 46 head and neck cancer cases. DTRT had lower dose to salivary glands and swallowing structure, resulting in lower predicted xerostomia and dysphagia compared to VMAT. DTRT is deliverable on C-arm linacs with high dosimetric accuracy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:与用于多个治疗部位的标准共面技术相比,非共面技术已经显示出改善可实现的剂量分布,但是找到最佳射束方向是具有挑战性的。动态准直器轨迹放射治疗(colli-DTRT)是一种新的调强放射治疗技术,它使用非共面部分弧和动态准直器旋转。
    目的:通过迭代4π注量图优化(FMO)和光束方向消除,确定部分弧的工作台角度和机架角度范围,解决colli-DTRT和非共面VMAT(NC-VMAT)的光束角度优化(BAO)问题。
    方法:BAO考虑了在台架图上采样的所有可用光束方向,其中准直器角度与上下轴(colli-DTRT)或静态(NC-VMAT)对齐。首先,FMO被执行,和波束方向基于它们对目标函数的贡献进行评分。对映射进行阈值化以去除贡献最小的波束方向,和弧候选由具有相同表角度的相邻波束方向形成。接下来,FMO和候选电弧修整,基于目标函数惩罚得分,迭代地执行,直到达到期望的总机架角度范围。最后一组colli-DTRT或NC-VMAT弧上的直接孔径优化可生成可交付计划。Colli-DTRT和NC-VMAT计划针对7例具有头颈部目标的临床病例(2例),大脑,食道,肺,乳房,还有前列腺.将colli-DTRT和NC-VMAT与共平面VMAT计划以及针对大脑和头颈部病例的非共平面VMAT计划进行了比较。使用胶片测量对一个colli-DTRT(头颈部)和一个NC-VMAT(乳房)计划进行剂量学验证。
    结果:所有技术的目标覆盖率和一致性相似。与共平面VMAT相比,colli-DTRT和NC-VMAT计划在除前列腺外的所有技术均相同的所有治疗部位均提高了剂量学性能.对于头颈部和脑部病例,平行器官处方剂量的平均剂量减少百分比平均为0.7%(colli-DTRT),与VMAT相比,0.8%(NC-VMAT)和0.4%(类解决方案)。连续器官的D2%平均减少1.7%(colli-DTRT),2.0%(NC-VMAT)和0.9%(类解决方案)。对于食道,肺,和乳腺病例,与VMAT相比,平行器官的平均剂量减少平均为0.2%(colli-DTRT)和0.3%(NC-VMAT).连续器官的D2%平均减少1.3%(colli-DTRT)和0.9%(NC-VMAT)。对于720°的完整机架角度范围,colli-DTRT和NC-VMAT的估计交付时间低于4分钟,包括弧之间的过渡,除了大脑的情况下,多个弧覆盖了整个表的角度范围。这些时间与头颈部和大脑病例的分类解决方案顺序相同。Colli-DTRT的总优化时间延长了25%-107%,包括BAO,与VMAT相比。
    结论:我们成功开发了用于colli-DTRT和NC-VMAT治疗计划的剂量激励的BAO。colli-DTRT和NC-VMAT适用于多个治疗部位,包括身体部位,与共面VMAT相比,具有有益或等效的剂量学性能和合理的交货时间。
    BACKGROUND: Non-coplanar techniques have shown to improve the achievable dose distribution compared to standard coplanar techniques for multiple treatment sites but finding optimal beam directions is challenging. Dynamic collimator trajectory radiotherapy (colli-DTRT) is a new intensity modulated radiotherapy technique that uses non-coplanar partial arcs and dynamic collimator rotation.
    OBJECTIVE: To solve the beam angle optimization (BAO) problem for colli-DTRT and non-coplanar VMAT (NC-VMAT) by determining the table-angle and the gantry-angle ranges of the partial arcs through iterative 4π fluence map optimization (FMO) and beam direction elimination.
    METHODS: BAO considers all available beam directions sampled on a gantry-table map with the collimator angle aligned to the superior-inferior axis (colli-DTRT) or static (NC-VMAT). First, FMO is performed, and beam directions are scored based on their contributions to the objective function. The map is thresholded to remove the least contributing beam directions, and arc candidates are formed by adjacent beam directions with the same table angle. Next, FMO and arc candidate trimming, based on objective function penalty score, is performed iteratively until a desired total gantry angle range is reached. Direct aperture optimization on the final set of colli-DTRT or NC-VMAT arcs generates deliverable plans. colli-DTRT and NC-VMAT plans were created for seven clinically-motivated cases with targets in the head and neck (two cases), brain, esophagus, lung, breast, and prostate. colli-DTRT and NC-VMAT were compared to coplanar VMAT plans as well as to class-solution non-coplanar VMAT plans for the brain and head and neck cases. Dosimetric validation was performed for one colli-DTRT (head and neck) and one NC-VMAT (breast) plan using film measurements.
    RESULTS: Target coverage and conformity was similar for all techniques. colli-DTRT and NC-VMAT plans had improved dosimetric performance compared to coplanar VMAT for all treatment sites except prostate where all techniques were equivalent. For the head and neck and brain cases, mean dose reduction-in percentage of the prescription dose-to parallel organs was on average 0.7% (colli-DTRT), 0.8% (NC-VMAT) and 0.4% (class-solution) compared to VMAT. The reduction in D2% for the serial organs was on average 1.7% (colli-DTRT), 2.0% (NC-VMAT) and 0.9% (class-solution). For the esophagus, lung, and breast cases, mean dose reduction to parallel organs was on average 0.2% (colli-DTRT) and 0.3% (NC-VMAT) compared to VMAT. The reduction in D2% for the serial organs was on average 1.3% (colli-DTRT) and 0.9% (NC-VMAT). Estimated delivery times for colli-DTRT and NC-VMAT were below 4 min for a full gantry angle range of 720°, including transitions between arcs, except for the brain case where multiple arcs covered the whole table angle range. These times are in the same order as the class-solution for the head and neck and brain cases. Total optimization times were 25%-107% longer for colli-DTRT, including BAO, compared to VMAT.
    CONCLUSIONS: We successfully developed dosimetrically motivated BAO for colli-DTRT and NC-VMAT treatment planning. colli-DTRT and NC-VMAT are applicable to multiple treatment sites, including body sites, with beneficial or equivalent dosimetric performances compared to coplanar VMAT and reasonable delivery times.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:为了改善危险器官(OAR)的保留,动态轨迹放射治疗(DTRT)通过动态表和准直器旋转在光束打开期间扩展VMAT。然而,尚未进行有关台架(GT)旋转梯度对DTRT计划质量影响的全面调查。
    目的:根据剂量计划质量,研究用户定义的GT旋转梯度对DTRT计划计划质量的影响,剂量测定鲁棒性,可交付性,和交货时间。
    方法:DTRT的动态轨迹由GT和机架-准直器路径描述。通过最小化OAR与计划目标体积(PTV)的重叠来确定GT路径。通过两个相邻控制点(G=|Δtableangle/Δ龙门角度|$G=|\\Delta{\mathrm{table\angle}}/\\Delta{\mathrm{table\angle}}/\\Delta{\mathrm{龙门\angle}}}|Δa的最大变化(G\$})创建四个DTRT计划,具有不同的最大G&ΔG:Gmax${G}_{max}$&ΔGmax${{\\Delta}}{G}_{max}$=0.5&0.125(DTRT-1),1和0.125(DTRT-2),3和0.125(DTRT-3)和3和1(DTRT-4),包括3-4个动态轨迹,对于头部和颈部和大脑区域的三个临床动机病例(A,B,andC).创建每个案例的参考VMAT计划。对于所有计划,计划质量进行评估和比较。剂量测定计划质量通过目标覆盖率来评估,一致性,和OAR保留。剂量稳健性针对横向±3mm$\\pm3\\{\\mathrm{mm}}$之间的系统和随机患者设置不确定性进行评估,纵向,和垂直方向,和动态旋转机器部件中的±4○$\\pm4^\\circ\\$之间的机器不确定性(龙门,table,准直器旋转)。记录交货时间。通过对所有计划的日志文件分析来评估TrueBeam上的可交付性和交付准确性,并通过一种情况的胶片测量进行额外验证。所有剂量计算均基于蒙特卡洛。
    结果:使用用户定义的Gmax&ΔGmax${G}_{max}\\&{{\\Delta}}{G}_{max}{G}_{max}$对DTRT计划流程的扩展已成功演示。随着Gmax和ΔGmax${G}_{max}\\&{{\\Delta}}{G}_{max}$,轻微(情况C,Dmean,parotidl。${D}_{表示,\\腮腺\\l.}$:最高为-1Gy)和实质性(案例A,D0.03cm3,opticnerver。${D}_{0.03c{m}^3,\\视神经\\r.}$:最高-9.3Gy,案例Dmean,brain$\\{D}_{表示,\\brain}$:高达-4.7Gy)与VMAT相比,观察到OAR节省的改善,同时保持类似的目标覆盖率。所有计划都在TrueBeam上交付。对于龙门架,记录在日志文件中的预期和实际机器位置值偏离<0.2°,表和准直器旋转。胶片测量与剂量计算的一致性>96%(2%全局/2mmγ通过率)。随着Gmax和ΔGmax${G}_{max}\\&{{\\Delta}}{G}_{max}$,与VMAT和DTRT-1相比,递送时间延长<2分钟/轨迹(DTRT-4)。案例A和B的DTRT计划和案例C计划的VMAT计划揭示了所考虑的不确定性的最佳剂量稳健性。
    结论:针对头颈部和脑部区域的3例病例,全面研究了GT旋转梯度对DTRT计划质量的影响。增加此梯度的自由度可提高剂量测定计划的质量,但以增加所调查案例的交付时间为代价。没有观察到GT旋转梯度对剂量测定鲁棒性的明显依赖性。
    BACKGROUND: To improve organ at risk (OAR) sparing, dynamic trajectory radiotherapy (DTRT) extends VMAT by dynamic table and collimator rotation during beam-on. However, comprehensive investigations regarding the impact of the gantry-table (GT) rotation gradient on the DTRT plan quality have not been conducted.
    OBJECTIVE: To investigate the impact of a user-defined GT rotation gradient on plan quality of DTRT plans in terms of dosimetric plan quality, dosimetric robustness, deliverability, and delivery time.
    METHODS: The dynamic trajectories of DTRT are described by GT and gantry-collimator paths. The GT path is determined by minimizing the overlap of OARs with planning target volume (PTV). This approach is extended to consider a GT rotation gradient by means of a maximum gradient of the path ( G m a x ${G}_{max}$ ) between two adjacent control points ( G = | Δ table angle / Δ gantry angle | $G = | \\Delta {{\\mathrm{table\\ angle}}/\\Delta {\\mathrm{gantry\\ angle}}} |$ ) and maximum absolute change of G ( Δ G m a x ${{\\Delta}}{G}_{max}$ ). Four DTRT plans are created with different maximum G&∆G: G m a x ${G}_{max}$ & Δ G m a x ${{\\Delta}}{G}_{max}$  = 0.5&0.125 (DTRT-1), 1&0.125 (DTRT-2), 3&0.125 (DTRT-3) and 3&1‍(DTRT-4), including 3-4 dynamic trajectories, for three clinically motivated cases in the head and neck and brain region (A, B, and C). A reference VMAT plan for each case is created. For all plans, plan quality is assessed and compared. Dosimetric plan quality is evaluated by target coverage, conformity, and OAR sparing. Dosimetric robustness is evaluated against systematic and random patient-setup uncertainties between ± 3 mm $ \\pm 3\\ {\\mathrm{mm}}$ in the lateral, longitudinal, and vertical directions, and machine uncertainties between ± 4 ∘ $ \\pm 4^\\circ \\ $ in the dynamically rotating machine components (gantry, table, collimator rotation). Delivery time is recorded. Deliverability and delivery accuracy on a TrueBeam are assessed by logfile analysis for all plans and additionally verified by film measurements for one case. All dose calculations are Monte Carlo based.
    RESULTS: The extension of the DTRT planning process with user-defined G m a x & Δ G m a x ${G}_{max}\\& {{\\Delta}}{G}_{max}$ to investigate the impact of the GT rotation gradient on plan quality is successfully demonstrated. With increasing G m a x & Δ G m a x ${G}_{max}\\& {{\\Delta}}{G}_{max}$ , slight (case C, D m e a n , p a r o t i d l . ${D}_{mean,\\ parotid\\ l.}$ : up to‍-1‍Gy) and substantial (case A, D 0.03 c m 3 , o p t i c n e r v e r . ${D}_{0.03c{m}^3,\\ optic\\ nerve\\ r.}$ : up to -9.3 Gy, case‍B, D m e a n , b r a i n $\\ {D}_{mean,\\ brain}$ : up to -4.7‍Gy) improvements in OAR sparing are observed compared to VMAT, while maintaining similar target coverage. All plans are delivered on the TrueBeam. Expected and actual machine position values recorded in the logfiles deviated by <0.2° for gantry, table and collimator rotation. The film measurements agreed by >96% (2%‍global/2 mm Gamma passing rate) with the dose calculation. With increasing G m a x & Δ G m a x ${G}_{max}\\& {{\\Delta}}{G}_{max}$ , delivery time is prolonged by <2 min/trajectory (DTRT-4) compared to VMAT and DTRT-1. The DTRT plans for case A and B and the VMAT plan for case C plan reveal the best dosimetric robustness for the considered uncertainties.
    CONCLUSIONS: The impact of the GT rotation gradient on DTRT plan quality is comprehensively investigated for three cases in the head and neck and brain region. Increasing freedom in this gradient improves dosimetric plan quality at the cost of increased delivery time for the investigated cases. No clear dependency of GT rotation gradient on dosimetric robustness is observed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Objective.本研究的目的是开发使用动态机架旋转的非等中心动态轨迹放射治疗(DTRT)的治疗计划流程(TPP),准直器旋转,表旋转,纵向,垂直和横向表平移和强度调制,并验证剂量测定的准确性。方法。TPP包括两个步骤。首先,描述动态机架旋转的路径,确定准直器旋转和动态工作台旋转和平移。第二,执行沿路径的强度调制的优化。我们展示了三个用例的TPP。首先,在剂量测定计划质量和交付时间方面,将针对大脑病例的非等中心DTRT计划与等中心DTRT计划进行了比较。第二,将颅脊髓照射(CSI)病例的非等中心DTRT计划与多等中心调强放疗(IMRT)计划进行比较.第三,将双侧乳腺病例的非等中心DTRT计划与多等中心容积调节电弧治疗(VMAT)计划进行比较.非等中心DTRT计划以开发人员模式在TrueBeam上交付,并使用辐射变色胶片验证其剂量测定精度。主要结果。大脑病例的非等中心DTRT计划在剂量测定计划质量和交付时间上与等中心DTRT计划相似,但有望降低碰撞风险。与IMRT计划相比,CSI案例的DTRT计划显示出类似的剂量测定计划质量,同时将交付时间减少了45%。与VMAT计划相比,针对乳腺病例的DTRT计划显示出更好的治疗计划质量。对于所有三个计划,测得的剂量分布和计算的剂量分布之间的伽马通过率均高于95%。意义。非等中心DTRT的多功能优势在三个用例中得到了证明,即降低碰撞风险,减少设置和交付时间,提高剂量测定计划质量。
    Objective.The purpose of this study is to develop a treatment planning process (TPP) for non-isocentric dynamic trajectory radiotherapy (DTRT) using dynamic gantry rotation, collimator rotation, table rotation, longitudinal, vertical and lateral table translations and intensity modulation and to validate the dosimetric accuracy.Approach.The TPP consists of two steps. First, a path describing the dynamic gantry rotation, collimator rotation and dynamic table rotation and translations is determined. Second, an optimization of the intensity modulation along the path is performed. We demonstrate the TPP for three use cases. First, a non-isocentric DTRT plan for a brain case is compared to an isocentric DTRT plan in terms of dosimetric plan quality and delivery time. Second, a non-isocentric DTRT plan for a craniospinal irradiation (CSI) case is compared to a multi-isocentric intensity modulated radiotherapy (IMRT) plan. Third, a non-isocentric DTRT plan for a bilateral breast case is compared to a multi-isocentric volumetric modulated arc therapy (VMAT) plan. The non-isocentric DTRT plans are delivered on a TrueBeam in developer mode and their dosimetric accuracy is validated using radiochromic films.Main results.The non-isocentric DTRT plan for the brain case is similar in dosimetric plan quality and delivery time to the isocentric DTRT plan but is expected to reduce the risk of collisions. The DTRT plan for the CSI case shows similar dosimetric plan quality while reducing the delivery time by 45% in comparison with the IMRT plan. The DTRT plan for the breast case showed better treatment plan quality in comparison with the VMAT plan. The gamma passing rates between the measured and calculated dose distributions are higher than 95% for all three plans.Significance.The versatile benefits of non-isocentric DTRT are demonstrated with three use cases, namely reduction of collision risk, reduced setup and delivery time and improved dosimetric plan quality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号