DO-stat

  • 文章类型: Journal Article
    来自黑曲霉的β-呋喃果糖苷酶已被广泛用于从蔗糖商业生产低聚果糖。在这项研究中,β-呋喃果糖苷酶的天然和工程版本在3-磷酸甘油醛脱氢酶启动子的控制下在巴斯德毕赤酵母中表达,并使用溶解氧(DO-stat)或恒定进料分批进料策略在生物反应器中评估生产。DO-stat培养产生较低的生物量浓度,但这导致两种菌株的体积活性较高。天然酶在两种喂养策略中都产生了最高的体积酶活性(比工程酶高20.8%和13.5%,对于DO-stat和恒定进料,分别)。然而,由于工艺时间要求较短(恒定饲料为59小时,DO-stat饲料为155小时),恒定的饲料培养对天然酶和工程酶都产生了更高的生物量浓度和更高的体积生产率。尽管DO-stat喂养策略实现了更高的最大酶活性,恒定补料策略对于使用甘油生产β-呋喃果糖苷酶将是优选的,这是由于与其提高的体积酶生产率相关的许多工业优势。
    The β-fructofuranosidase enzyme from Aspergillus niger has been extensively used to commercially produce fructooligosaccharides from sucrose. In this study, the native and an engineered version of the β-fructofuranosidase enzyme were expressed in Pichia pastoris under control of the glyceraldehyde-3-phosphate dehydrogenase promoter, and production was evaluated in bioreactors using either dissolved oxygen (DO-stat) or constant feed fed-batch feeding strategies. The DO-stat cultivations produced lower biomass concentrations but this resulted in higher volumetric activity for both strains. The native enzyme produced the highest volumetric enzyme activity for both feeding strategies (20.8% and 13.5% higher than that achieved by the engineered enzyme, for DO-stat and constant feed, respectively). However, the constant feed cultivations produced higher biomass concentrations and higher volumetric productivity for both the native as well as engineered enzymes due to shorter process time requirements (59 h for constant feed and 155 h for DO-stat feed). Despite the DO-stat feeding strategy achieving a higher maximum enzyme activity, the constant feed strategy would be preferred for production of the β-fructofuranosidase enzyme using glycerol due to the many industrial advantages related to its enhanced volumetric enzyme productivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们研究了在携带质粒pBAD/3C/bTGase的大肠杆菌BL21(DE3)pLysS中克隆的解淀粉芽孢杆菌转谷氨酰胺酶的表达,双顺反子表达系统,在生物反应器培养中。作为DO-stat策略控制的分批和补料分批用于重组酶的生产。在使用特立克肉汤(TB)的30小时分批培养中,获得了6g/L的生物量和3.12U/mg的转谷氨酰胺酶活性蛋白。使用TB作为培养基,在氧气浓度(DO-stat)控制下进行DO-stat补料分批培养,但饲喂葡萄糖可以增加生物量的形成(17.5g/L)和酶活性(6.43U/mg蛋白)。使用矿物质培养基(M9)并在相同条件下用葡萄糖补料的DO-stat分批补料产生甚至更高的酶活性(9.14U/mg蛋白)。研究了pH的影响,在pH为8时可以观察到最佳的酶活性。在所有的栽培中,双顺反子系统保持稳定,100%携带质粒的细胞。这些结果表明,携带双顺反子质粒构建体以表达重组TGase的大肠杆菌可以在使用矿物培养基的DO-stat补料分批的生物反应器中培养,并且在未来的优化中生产这种重要的酶是有希望的策略。
    We studied the expression of Bacillus amyloliquefaciens transglutaminase cloned in Escherichia coli BL21(DE3)pLysS harboring the plasmid pBAD/3C/bTGase, a bicistronic expression system, in bioreactor cultivation. Batch and fed-batch controlled as DO-stat strategies were employed for the production of the recombinant enzyme. In 30 h-batch cultivations using Terrific broth (TB), 6 g/L of biomass and 3.12 U/mgprotein of transglutaminase activity were obtained. DO-stat fed-batch cultivations under the control of oxygen concentration (DO-stat) using TB as medium but fed with glucose allowed the increment in biomass formation (17.5 g/L) and enzyme activity (6.43 U/mgprotein). DO-stat fed-batch using mineral medium (M9) and fed with glucose under the same conditions produced even higher enzymatic activity (9.14 U/mgprotein). The pH effect was investigated, and the best enzymatic activity could be observed at pH 8. In all cultivations, the bicistronic system remained stable, with 100% of plasmid-bearing cells. These results show that E. coli bearing bicistronic plasmid constructs to express recombinant TGase could be cultivated in bioreactors under DO-stat fed-batch using mineral medium and it is a promising strategy in future optimizations to produce this important enzyme.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Dissolved oxygen (DO)-stat fed-batch culture, which allows a high cell density culture of microorganisms under constant DO conditions, was applied to anti-CRP single-chain variable fragment (scFv) production using recombinant Escherichia coli. The DO-stat fed-batch culture was successfully performed under various DO conditions for more than 50 h, resulting in increased scFv production from 0.5 to 0.8 g/L by flask and batch cultures to 2.8-3.0 g/L by the fed-batch culture under the conditions of 5-40% of DO saturation. The formation of inclusion bodies was effectively depressed during DO-stat fed-batch operation; consequently, the solubility of anti-CRP scFv was significantly improved from 36-43% by the flask and batch cultures to 96-98% by the DO-stat fed-batch culture under a wide range of DO conditions. From the kinetic analysis of fed-batch experiments, it was also found that the successful folding of anti-CRP scFv in the cytoplasm occurred when metabolic rates, such as the specific growth rate and specific glucose consumption rate, were relatively low. These results show that the fed-batch culture operated by the DO-stat feeding strategy was effective for the enhanced production of anti-CRP scFv with high solubility.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The glycoprotein (G-protein) of rabies virus is responsible for viral attachment to the host cell surface and induces virus neutralization antibodies. In the present study, the G-protein gene of rabies virus CVS strain was cloned, sequenced and expressed in the yeast, Pichia pastoris, as a secreted protein, using a simplified DO-stat control feeding strategy. This strategy involves the addition of methanol when the dissolved oxygen (DO) level rises above the setpoint avoiding methanol accumulation and oxygen limitation. The G-protein expression was evaluated by SDS-PAGE, ELISA, and western blot assays. Like native G-protein, the recombinant G-protein was found reactive when it was challenged against specific antibodies. The data indicate that the recombinant G-protein can be easily expressed and isolated, and may be useful as a safe source in the production of diagnostic kits and subunit vaccines to prevent rabies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The simultaneous production of intracellular esterase and extracellular protease from the strain Lysinibacillus fusiformis AU01 was studied in detail. The production was performed both under batch and fed-batch modes. The maximum yield of intracellular esterase and protease was obtained under full oxygen saturation at the beginning of the fermentation. The data were fitted to the Luedeking-Piret model and it was shown that the enzyme (both esterase and protease) production was growth associated. A decrease in intracellular esterase and increase in the extracellular esterase were observed during late stationary phase. The appearance of intracellular proteins in extracellular media and decrease in viable cell count and biomass during late stationary phase confirmed that the presence of extracellular esterase is due to cell lysis. Even though the fed-batch fermentation with different feeding strategies showed improved productivity, feeding yeast extract under DO-stat fermentation conditions showed highest intracellular esterase and protease production. Under DO-stat fed-batch cultivation, maximum intracellular esterase activity of 820 × 103 U/L and extracellular protease activity of 172 × 103 U/L were obtained at the 16th hr. Intracellular esterase and extracellular protease production were increased fivefold and fourfold, respectively, when compared to batch fermentation performed under shake flask conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The production of poly-γ-glutamic acid (γ-PGA) by Bacillus subtilis NX-2 using a moving bed biofilm reactor (MBBR) system was tested for the first time in this study. Polypropylene TL-2 was chosen as a suitable carrier, and γ-PGA concentration of 42.7±0.86g/L and productivity of 0.59±0.06g/(Lh) were obtained in batch fermentation. After application of the strategy of dissolved oxygen (DO)-stat feeding, higher γ-PGA concentration and productivity were achieved than with glucose feedback feeding. Finally, the repeated fed-batch cultures implemented in the MBBR system showed high stability, and the maximal γ-PGA concentration and productivity of 74.2g/L and 1.24g/(Lh) were achieved, respectively. In addition, the promotion of oxygen transfer by an MBBR carrier was well explained by a computational fluid dynamics (CFD) simulation. These results suggest that an MBBR system could be applied to large-scale γ-PGA production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The yeast Komagataella pastoris was cultivated under different fed-batch strategies for the production of chitin-glucan complex (CGC), a co-polymer of chitin and β-glucan. The tested fed-batch strategies included DO-stat mode, predefined feeding profile and repeated fed-batch operation. Although high cell dry mass and high CGC production were obtained under the tested DO-stat strategy in a 94h cultivation (159 and 29g/L, respectively), the overall biomass and CGC productivities were low (41 and 7.4g/Lday, respectively). Cultivation with a predefined profile significantly improved both biomass and CGC volumetric productivity (87 and 10.8g/Lday, respectively). Hence, this strategy was used to implement a repeated fed-batch process comprising 7 consecutive cycles. A daily production of 119-126g/L of biomass with a CGC content of 11-16wt% was obtained, thus proving this cultivation strategy is adequate to reach a high CGC productivity that ranged between 11 and 18g/Lday. The process was stable and reproducible in terms of CGC productivity and polymer composition, making it a promising strategy for further process development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号