Convolutional neural network (CNN)

卷积神经网络 (CNN)
  • 文章类型: Journal Article
    心电图(ECG)已成为一种无处不在的诊断工具,用于识别和表征各种心血管疾病。可穿戴健康监测设备,配备了设备上的生物医学人工智能(AI)处理器,彻底改变了收购,分析,和心电图数据的解释。然而,这些系统需要具有灵活配置的人工智能处理器,便于携带,并在功耗和延迟方面展示实现各种功能的最佳性能。为了应对这些挑战,本研究提出了一种指令驱动的卷积神经网络(CNN)处理器。该处理器包含三个关键特征:(1)指令驱动的CNN处理器,以支持通用的基于ECG的应用。(2)同时考虑并行性和数据重用的处理元件(PE)阵列设计。(3)基于CORDIC算法的激活单元,支持Tanh和Sigmoid计算。本设计采用110nmCMOS工艺技术,占用1.35mm2的管芯面积,功耗为12.94µW。它已经被证明与两个典型的ECGAI应用,包括两类(即,正常/异常)分类和五类分类。提出的1-DCNN算法对两类分类具有97.95%的准确性,对五类分类具有97.9%的准确性,分别。
    Electrocardiography (ECG) has emerged as a ubiquitous diagnostic tool for the identification and characterization of diverse cardiovascular pathologies. Wearable health monitoring devices, equipped with on-device biomedical artificial intelligence (AI) processors, have revolutionized the acquisition, analysis, and interpretation of ECG data. However, these systems necessitate AI processors that exhibit flexible configuration, facilitate portability, and demonstrate optimal performance in terms of power consumption and latency for the realization of various functionalities. To address these challenges, this study proposes an instruction-driven convolutional neural network (CNN) processor. This processor incorporates three key features: (1) An instruction-driven CNN processor to support versatile ECG-based application. (2) A Processing element (PE) array design that simultaneously considers parallelism and data reuse. (3) An activation unit based on the CORDIC algorithm, supporting both Tanh and Sigmoid computations. The design has been implemented using 110 nm CMOS process technology, occupying a die area of 1.35 mm2 with 12.94 µW power consumption. It has been demonstrated with two typical ECG AI applications, including two-class (i.e., normal/abnormal) classification and five-class classification. The proposed 1-D CNN algorithm performs with a 97.95% accuracy for the two-class classification and 97.9% for the five-class classification, respectively.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:胸部X线摄影是检测肋骨骨折的标准方法。我们的研究旨在开发一种人工智能(AI)模型,只有相对少量的训练数据,可以在胸片上识别肋骨骨折并准确标记其精确位置,从而实现与医疗专业人员相当的诊断准确性。方法:对于这项回顾性研究,我们使用540张标记为Detectron2的胸部X线照片(270张正常照片和270张肋骨骨折照片)开发了一个AI模型,该模型结合了一个更快的基于区域的卷积神经网络(R-CNN),增强了特征金字塔网络(FPN).评估了模型对X线照片进行分类和检测肋骨骨折的能力。此外,我们将模型的性能与12名医生的性能进行了比较,包括6名经委员会认证的麻醉师和6名住院医师,通过观察者性能测试。结果:关于AI模型的射线照相分类性能,灵敏度,特异性,受试者工作特征曲线下面积(AUROC)分别为0.87、0.83和0.89。在肋骨断裂检测性能方面,灵敏度,假阳性率,自由反应接收器工作特性(JAFROC)品质因数(FOM)分别为0.62、0.3和0.76。AI模型在观察者绩效测试中与12名医生中的11名和12名医生中的10名相比没有统计学上的显着差异,分别。结论:我们开发了一个在有限的数据集上训练的AI模型,该模型显示了与经验丰富的医生相当的肋骨骨折分类和检测性能。
    Background: Chest radiography is the standard method for detecting rib fractures. Our study aims to develop an artificial intelligence (AI) model that, with only a relatively small amount of training data, can identify rib fractures on chest radiographs and accurately mark their precise locations, thereby achieving a diagnostic accuracy comparable to that of medical professionals. Methods: For this retrospective study, we developed an AI model using 540 chest radiographs (270 normal and 270 with rib fractures) labeled for use with Detectron2 which incorporates a faster region-based convolutional neural network (R-CNN) enhanced with a feature pyramid network (FPN). The model\'s ability to classify radiographs and detect rib fractures was assessed. Furthermore, we compared the model\'s performance to that of 12 physicians, including six board-certified anesthesiologists and six residents, through an observer performance test. Results: Regarding the radiographic classification performance of the AI model, the sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) were 0.87, 0.83, and 0.89, respectively. In terms of rib fracture detection performance, the sensitivity, false-positive rate, and free-response receiver operating characteristic (JAFROC) figure of merit (FOM) were 0.62, 0.3, and 0.76, respectively. The AI model showed no statistically significant difference in the observer performance test compared to 11 of 12 and 10 of 12 physicians, respectively. Conclusions: We developed an AI model trained on a limited dataset that demonstrated a rib fracture classification and detection performance comparable to that of an experienced physician.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脑机接口(BCI),代表了人机交互的变革形式,使用户能够通过大脑信号直接与外部环境进行交互。为了响应对高精度的要求,鲁棒性,以及基于运动图像(MI)的BCI内部的端到端功能,本文介绍了STaRNet,一种将多尺度时空卷积神经网络(CNN)与黎曼几何相结合的新模型。最初,STaRNet集成了一个多尺度时空特征提取模块,可以捕获全局和局部特征,从这些综合的时空特征中促进黎曼流形的构造。随后,矩阵对数运算将基于流形的特征转换为切线空间,然后是致密层进行分类。没有预处理,通过在BCICompetitionIV2a数据集上实现83.29%的平均解码精度和0.777的kappa值,STaRNet超越了最先进的(SOTA)模型,高伽马数据集上的kappa值为0.939,准确率为95.45%。此外,StaRNet与几种SOTA模型的比较分析,专注于两个数据集中最具挑战性的主题,突出了STaRNet的卓越稳健性。最后,学习频带的可视化表明时间卷积已经学习了MI相关频带,跨多层STaRNet的特征的t-SNE分析表现出强大的特征提取能力。我们相信,健壮,STaRNet的端到端功能将促进BCI的发展。
    Brain-computer interfaces (BCIs), representing a transformative form of human-computer interaction, empower users to interact directly with external environments through brain signals. In response to the demands for high accuracy, robustness, and end-to-end capabilities within BCIs based on motor imagery (MI), this paper introduces STaRNet, a novel model that integrates multi-scale spatio-temporal convolutional neural networks (CNNs) with Riemannian geometry. Initially, STaRNet integrates a multi-scale spatio-temporal feature extraction module that captures both global and local features, facilitating the construction of Riemannian manifolds from these comprehensive spatio-temporal features. Subsequently, a matrix logarithm operation transforms the manifold-based features into the tangent space, followed by a dense layer for classification. Without preprocessing, STaRNet surpasses state-of-the-art (SOTA) models by achieving an average decoding accuracy of 83.29% and a kappa value of 0.777 on the BCI Competition IV 2a dataset, and 95.45% accuracy with a kappa value of 0.939 on the High Gamma Dataset. Additionally, a comparative analysis between STaRNet and several SOTA models, focusing on the most challenging subjects from both datasets, highlights exceptional robustness of STaRNet. Finally, the visualizations of learned frequency bands demonstrate that temporal convolutions have learned MI-related frequency bands, and the t-SNE analyses of features across multiple layers of STaRNet exhibit strong feature extraction capabilities. We believe that the accurate, robust, and end-to-end capabilities of the STaRNet will facilitate the advancement of BCIs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本文提出了信号分配控制算法(SDCA)的卷积神经网络(CNN)模型,以最大化每个路口相位的动态车辆交通信号流。所提出的算法的目的是确定奖励值和新状态。它解构了当前多方向排队系统(MDQS)体系结构的路由组件,以确定每个流量场景的最佳策略。最初,状态值分为函数值和参数值。组合这两种方案更新得到的优化状态值。最终,为当前数据集开发了一个类似的标准。接下来,计算当前场景的误差或损失值。此外,利用具有四智能体的深度Q学习方法增强了先前的研究发现。推荐的方法在有效优化交通信号定时方面优于所有其他传统方法。
    This paper proposes a convolutional neural network (CNN) model of the signal distribution control algorithm (SDCA) to maximize the dynamic vehicular traffic signal flow for each junction phase. The aim of the proposed algorithm is to determine the reward value and new state. It deconstructs the routing components of the current multi-directional queuing system (MDQS) architecture to identify optimal policies for every traffic scenario. Initially, the state value is divided into a function value and a parameter value. Combining these two scenarios updates the resulting optimized state value. Ultimately, an analogous criterion is developed for the current dataset. Next, the error or loss value for the present scenario is computed. Furthermore, utilizing the Deep Q-learning methodology with a quad agent enhances previous study discoveries. The recommended method outperforms all other traditional approaches in effectively optimizing traffic signal timing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这项工作解决了使用深度学习架构将多类视觉EEG信号分类为40类的脑机接口应用的挑战。视觉多类分类方法为BCI应用程序提供了显着的优势,因为它允许监督多个BCI交互。考虑到每个类标签监督一个BCI任务。然而,由于脑电信号的非线性和非平稳性,使用基于EEG特征的多类别分类仍然是BCI系统的重大挑战。在目前的工作中,实现了基于互信息的判别通道选择和最小范数估计算法,以选择判别通道并增强EEG数据。因此,分别实现了深度EEGNet和卷积递归神经网络,将用于图像可视化的EEG数据分类为40个标签。使用k折交叉验证方法,通过实施上述网络体系结构,平均分类准确率分别为94.8%和89.8%。使用该方法获得的令人满意的结果为多任务嵌入式BCI应用程序提供了新的实现机会,该应用程序利用了减少数量的通道(<50%)和网络参数(<110K)。
    This work addresses the challenge of classifying multiclass visual EEG signals into 40 classes for brain-computer interface applications using deep learning architectures. The visual multiclass classification approach offers BCI applications a significant advantage since it allows the supervision of more than one BCI interaction, considering that each class label supervises a BCI task. However, because of the nonlinearity and nonstationarity of EEG signals, using multiclass classification based on EEG features remains a significant challenge for BCI systems. In the present work, mutual information-based discriminant channel selection and minimum-norm estimate algorithms were implemented to select discriminant channels and enhance the EEG data. Hence, deep EEGNet and convolutional recurrent neural networks were separately implemented to classify the EEG data for image visualization into 40 labels. Using the k-fold cross-validation approach, average classification accuracies of 94.8% and 89.8% were obtained by implementing the aforementioned network architectures. The satisfactory results obtained with this method offer a new implementation opportunity for multitask embedded BCI applications utilizing a reduced number of both channels (<50%) and network parameters (<110 K).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于其良好的可穿戴性和便携性,可穿戴脑电图(EEG)设备在脑机接口(BCI)中的应用正在增长。与常规设备相比,可穿戴设备通常支持较少的EEG通道。具有很少通道EEG的设备已被证明可用于基于稳态视觉诱发电位(SSVEP)的BCI。然而,较少信道的EEG会导致BCI性能下降。为了解决这个问题,本研究提出了一种基于注意力的复谱卷积神经网络(atten-CCNN),它将CNN与挤压和激励块相结合,并使用EEG信号的频谱作为输入。在独立于受试者和依赖于受试者的条件下,在可穿戴40类数据集和公共12类数据集上评估了所提出的模型。结果表明,无论采用三通道EEG还是单通道EEG进行SSVEP识别,atten-CCNN优于基线模型,表明新模型可以有效地提高具有少通道EEG的SSVEP-BCI的性能。因此,这种基于少道EEG的SSVEP识别算法特别适合与可穿戴EEG设备一起使用。
    The application of wearable electroencephalogram (EEG) devices is growing in brain-computer interfaces (BCI) owing to their good wearability and portability. Compared with conventional devices, wearable devices typically support fewer EEG channels. Devices with few-channel EEGs have been proven to be available for steady-state visual evoked potential (SSVEP)-based BCI. However, fewer-channel EEGs can cause the BCI performance to decrease. To address this issue, an attention-based complex spectrum-convolutional neural network (atten-CCNN) is proposed in this study, which combines a CNN with a squeeze-and-excitation block and uses the spectrum of the EEG signal as the input. The proposed model was assessed on a wearable 40-class dataset and a public 12-class dataset under subject-independent and subject-dependent conditions. The results show that whether using a three-channel EEG or single-channel EEG for SSVEP identification, atten-CCNN outperformed the baseline models, indicating that the new model can effectively enhance the performance of SSVEP-BCI with few-channel EEGs. Therefore, this SSVEP identification algorithm based on a few-channel EEG is particularly suitable for use with wearable EEG devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    3D建模的最新进展彻底改变了各个领域,包括虚拟现实,计算机辅助诊断,和建筑设计,强调对三维点云进行准确质量评估的重要性。当这些模型经历简化和压缩等操作时,引入扭曲会显著影响他们的视觉质量。越来越需要可靠和有效的客观质量评估方法来应对这一挑战。在这种情况下,本文介绍了一种使用基于深度学习的无参考(NR)方法评估3D点云质量的新方法。首先,它从扭曲的点云中提取几何和感知属性,并将它们表示为一组一维向量。然后,通过ImageNet的权重转换,使用从2DCNN模型改编的1D卷积神经网络(1DCNN)应用迁移学习来获得高级特征。最后,质量分数是通过利用全连接层的回归预测的。所提出的方法的有效性在不同的数据集进行评估,包括彩色点云质量评估数据库(SJTU_PCQA),滑铁卢点云评估数据库(WPC),以及ICIP2020上的彩色点云质量评估数据库。与几种相互竞争的方法相比,结果揭示了卓越的性能,与平均意见得分的相关性增强证明了这一点。
    Recent advancements in 3D modeling have revolutionized various fields, including virtual reality, computer-aided diagnosis, and architectural design, emphasizing the importance of accurate quality assessment for 3D point clouds. As these models undergo operations such as simplification and compression, introducing distortions can significantly impact their visual quality. There is a growing need for reliable and efficient objective quality evaluation methods to address this challenge. In this context, this paper introduces a novel methodology to assess the quality of 3D point clouds using a deep learning-based no-reference (NR) method. First, it extracts geometric and perceptual attributes from distorted point clouds and represent them as a set of 1D vectors. Then, transfer learning is applied to obtain high-level features using a 1D convolutional neural network (1D CNN) adapted from 2D CNN models through weight conversion from ImageNet. Finally, quality scores are predicted through regression utilizing fully connected layers. The effectiveness of the proposed approach is evaluated across diverse datasets, including the Colored Point Cloud Quality Assessment Database (SJTU_PCQA), the Waterloo Point Cloud Assessment Database (WPC), and the Colored Point Cloud Quality Assessment Database featured at ICIP2020. The outcomes reveal superior performance compared to several competing methodologies, as evidenced by enhanced correlation with average opinion scores.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    COVID-19大流行暴露了对非交互式人类识别系统的需求,以确保用户和生物识别设备之间的安全隔离。这项研究介绍了一种新颖的多尺度深度卷积结构,用于短波人体步态认证(MSDCS-PHGA)。拟议的MSDCS-PHGA涉及分段,预处理,并将剪影图像的大小调整为三个尺度。使用自定义卷积层从这些多尺度图像中提取步态特征,并将其融合以形成集成特征集。这种多尺度深度卷积方法通过显着提高准确性来证明其在步态识别中的功效。所提出的卷积神经网络(CNN)架构使用三个基准数据集进行评估:CASIA、OU-ISIR,和OU-MVLP。此外,所提出的模型使用关键性能指标,如精度,与其他预训练模型进行评估。准确度,灵敏度,特异性,和训练时间。结果表明,所提出的深度CNN模型优于专注于人类步态的现有模型。值得注意的是,CASIA和OU-ISIR数据集的准确率约为99.9%,OU-MVLP数据集的准确率约为99.8%,同时保持3分钟左右的最小训练时间。
    The need for non-interactive human recognition systems to ensure safe isolation between users and biometric equipment has been exposed by the COVID-19 pandemic. This study introduces a novel Multi-Scaled Deep Convolutional Structure for Punctilious Human Gait Authentication (MSDCS-PHGA). The proposed MSDCS-PHGA involves segmenting, preprocessing, and resizing silhouette images into three scales. Gait features are extracted from these multi-scale images using custom convolutional layers and fused to form an integrated feature set. This multi-scaled deep convolutional approach demonstrates its efficacy in gait recognition by significantly enhancing accuracy. The proposed convolutional neural network (CNN) architecture is assessed using three benchmark datasets: CASIA, OU-ISIR, and OU-MVLP. Moreover, the proposed model is evaluated against other pre-trained models using key performance metrics such as precision, accuracy, sensitivity, specificity, and training time. The results indicate that the proposed deep CNN model outperforms existing models focused on human gait. Notably, it achieves an accuracy of approximately 99.9% for both the CASIA and OU-ISIR datasets and 99.8% for the OU-MVLP dataset while maintaining a minimal training time of around 3 min.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Published Erratum
    [这更正了文章DOI:10.3389/fonc.2022.951973。].
    [This corrects the article DOI: 10.3389/fonc.2022.951973.].
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    核酸结合蛋白(NABP),包括DNA结合蛋白(DBPs)和RNA结合蛋白(RBPs),在基本的生物过程中发挥重要作用。为了便于对不同类型的NABP进行功能注释和准确预测,已经开发了许多基于机器学习的计算方法。然而,这些研究中用于训练和测试的数据集以及预测范围限制了它们的应用。在本文中,我们开发了新策略来克服这些限制,方法是生成更准确和可靠的数据集,并开发基于深度学习的方法,包括分层和多类方法来预测任何给定蛋白质的NABP类型。深度学习模型采用两层卷积神经网络和一层长短期记忆。我们的方法优于现有的DBP和RBP预测因子,在DBP和RBP之间实现了平衡预测,并且在识别新型NABP时更实用。多类方法大大提高了DBPs和RBPs的预测精度,特别是对于提高~12%的DBPs。此外,我们探讨了单链DNA结合蛋白的预测准确性及其对NABP预测的总体预测准确性的影响.
    Nucleic acid-binding proteins (NABPs), including DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs), play important roles in essential biological processes. To facilitate functional annotation and accurate prediction of different types of NABPs, many machine learning-based computational approaches have been developed. However, the datasets used for training and testing as well as the prediction scopes in these studies have limited their applications. In this paper, we developed new strategies to overcome these limitations by generating more accurate and robust datasets and developing deep learning-based methods including both hierarchical and multi-class approaches to predict the types of NABPs for any given protein. The deep learning models employ two layers of convolutional neural network and one layer of long short-term memory. Our approaches outperform existing DBP and RBP predictors with a balanced prediction between DBPs and RBPs, and are more practically useful in identifying novel NABPs. The multi-class approach greatly improves the prediction accuracy of DBPs and RBPs, especially for the DBPs with ~12% improvement. Moreover, we explored the prediction accuracy of single-stranded DNA binding proteins and their effect on the overall prediction accuracy of NABP predictions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号