Click Chemistry

单击 “化学 ”
  • 文章类型: Journal Article
    点击化学是一种灵活的方法,仅具有最可行和最有效的化学反应。使用铜(I)作为催化剂,由叠氮化物和末端乙炔合成1,2,3-三唑是一个非常强大的反应,良好的选择性,和起始材料的生物相容性。三唑分子不仅仅是简单的被动接头;通过氢键和偶极相互作用,它们迅速与生物靶标结合。其在药物开发中的应用不断扩大,从面向目标的原位化学和铅生成的组合机制到研究蛋白质和DNA的生物缀合方法。在过去的几年中,点击化学经常被用来加速药物发现和优化过程。基于铜催化的叠氮化物-炔环加成(CuAAC)的点击化学反应是在药物化学和化学生物学中具有应用的生化过程。因此,点击反应是药物化学工具包的重要组成部分,帮助药物化学家克服化学反应中的障碍,增加吞吐量,提高复合库的标准。该综述强调了铜催化的叠氮化物-炔环加成(CuAAC)点击化学方法的最新进展,用于合成生物重要的三唑部分,并更加强调合成方法和药理学应用。此外,还讨论了基于三唑的FDA批准的药物的作用方式,以强调点击化学方法在合成生物活性三唑化合物中的重要性。
    Click chemistry is a flexible method featuring only the most feasible and efficient chemical reactions. The synthesis of 1,2,3-triazole from azides and terminal acetylenes using copper(I) as a catalyst is an extremely powerful reaction due to the extreme dependability, good selectivity, and biocompatibility of the starting materials. Triazole molecules are more than simple passive linkers; through hydrogen bonding and dipole interactions, they rapidly bind with biological targets. Its applications in drug development are expanding, ranging from target-oriented in situ chemistry and combinatorial mechanisms for lead generation to bioconjugation methods to study proteins and DNA. The click chemistry has frequently been used to speed up drug discovery and optimization processes in the past few years. The click chemistry reaction based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) is a biochemical process with applications in medicinal chemistry and chemical biology. Thus, click reactions are an essential component of the toolkit for medicinal chemistry and help medicinal chemists overcome the barriers in chemical reactions, increase throughput, and improve the standards of compound libraries. The review highlights the recent advancements in the copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry approach for synthesizing biologically important triazole moieties with a greater emphasis on synthesis methodologies and pharmacological applications. Additionally, the triazole-based FDA-approved drugs are also discussed with their mode of action to highlight the importance of the click chemistry approach in synthesizing the bioactive triazole compounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在过去的几十年中,用于标记蛋白质的代谢化学报告基因(MCR)的方法已被广泛使用。然而,用完全保护的MCR产生的人工副反应,称为S-糖修饰,通过碱基促进的β-消除和Michael加成与半胱氨酸残基发生,导致蛋白质组鉴定中的假阳性。因此,下一代MCR,包括部分保护的策略和对单糖主链的修饰,已经出现了提高标签效率的方法。在本文中,我们制备了15种非天然单糖,以研究其结构与S-糖修饰标记的关系。我们的结果表明,Ac4GlcNAz和Ac4GalNAz在检测到的化合物中表现出最显着的标记作用。值得注意的是,Ac4ManNAz,Ac46AzGlucose和Ac46AzGalactose含有相似的结构,但没有显示与它们相似的稳健信号。此外,对1-的其他修改,2-,3-,4-和6-位点表明S-糖修饰的副反应最小,提出了一种可能性,即单糖底物的微妙修饰可能会改变其在生物合成过程中的作用,例如,通过改变电负性或增强空间位阻效应。总之,我们的发现为在体外和体内选择合适的选择性标记蛋白探针而没有不希望的S-糖修饰提供了新的途径。
    The approach of metabolic chemical reporters (MCRs) for labeling proteins has been widely used in the past several decades. Nevertheless, artificial side reaction generated with fully protected MCRs, termed S-glyco-modification, occurs with cysteine residues through base-promoted β-elimination and Michael addition, leading to false positives in the proteomic identification. Therefore, next generation of MCRs, including partially protected strategy and modifications on the backbone of monosaccharides, have emerged to improve the labeling efficiency. In this paper, we prepared fifteen kinds of unnatural monosaccharides to investigate the relationships of structures and S-glyco-modification labeling. Our results demonstrated that Ac4GlcNAz and Ac4GalNAz exhibited the most remarkable labeling effects among the detected compounds. Of note, Ac4ManNAz, Ac46AzGlucose and Ac46AzGalactose containing similar structures but did not show similar robust signals as them. Moreover, other modifications on the 1-, 2-, 3-, 4- and 6-site indicated minimal side reactions of S-glyco-modification, raising a possibility that subtle modifications of monosaccharide substrate may alter its role in the process of biosynthesis, for example, by change of electronegativity or enhancement of steric hindrance effects. In conclusion, our discoveries provide a new avenue to choose appropriate probe for selective label proteins in vitro and in vivo without undesired S-glyco-modification.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    铜催化的点击化学为激活疗法提供了创造性的策略,而不会破坏生物过程。尽管付出了巨大的努力,目前的铜催化剂在实现高效率方面面临着根本性的挑战,原子经济,和组织特异性选择性。在这里,我们开发了一种简单的“混合匹配合成策略”,以制造一种仿生的单位点铜-联吡啶基铈金属有机框架(Cu/Ce-MOF@M),用于高效和肿瘤细胞特异性的生物正交催化。这种优雅的方法在MOF架构中实现了孤立的单Cu位点,导致异常高的催化性能。Cu/Ce-MOF@M在单颗粒水平上比广泛使用的MOF负载的铜纳米颗粒高32.1倍的催化活性,首先由单分子荧光显微镜证明。此外,用癌细胞膜伪装,Cu/Ce-MOF@M对其亲本细胞表现出优先向性。同时,Cu/Ce-MOF@M中的单位点CuII物种被癌细胞中的谷胱甘肽上调还原为CuI,以催化点击反应,使同型癌细胞激活的原位药物合成。此外,Cu/Ce-MOF@M表现出氧化酶和过氧化物酶模拟活性,进一步加强催化癌症治疗。本研究指导了高活性非均相过渡金属催化剂的合理设计,用于有针对性的生物正交反应。
    Copper-catalyzed click chemistry offers creative strategies for activation of therapeutics without disrupting biological processes. Despite tremendous efforts, current copper catalysts face fundamental challenges in achieving high efficiency, atom economy, and tissue-specific selectivity. Herein, we develop a facile \"mix-and-match synthetic strategy\" to fabricate a biomimetic single-site copper-bipyridine-based cerium metal-organic framework (Cu/Ce-MOF@M) for efficient and tumor cell-specific bioorthogonal catalysis. This elegant methodology achieves isolated single-Cu-site within the MOF architecture, resulting in exceptionally high catalytic performance. Cu/Ce-MOF@M favors a 32.1-fold higher catalytic activity than the widely used MOF-supported copper nanoparticles at single-particle level, as first evidenced by single-molecule fluorescence microscopy. Furthermore, with cancer cell-membrane camouflage, Cu/Ce-MOF@M demonstrates preferential tropism for its parent cells. Simultaneously, the single-site CuII species within Cu/Ce-MOF@M are reduced by upregulated glutathione in cancerous cells to CuI for catalyzing the click reaction, enabling homotypic cancer cell-activated in situ drug synthesis. Additionally, Cu/Ce-MOF@M exhibits oxidase and peroxidase mimicking activities, further enhancing catalytic cancer therapy. This study guides the reasonable design of highly active heterogeneous transition-metal catalysts for targeted bioorthogonal reactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    微管-驱动蛋白生物分子运动系统,这对细胞功能至关重要,对纳米技术的应用具有重要的前景。体外滑动测定已证明了通过推动微管穿过驱动蛋白包被的表面来运输微货物的能力。然而,微管的不受控制的定向运动提出了重大挑战,限制了系统在精确货物交付方面的应用。微流体装置提供了一种通过其几何特征引导微管运动的手段。Norland光学粘合剂(NOA)因其在微流体设备制造中的无模具应用而受到重视;但是,微管经常爬上通道壁,限制受控运动。在这项研究中,介绍了NOA的表面钝化方法,使用聚乙二醇通过硫醇-烯点击反应。该技术显着改善了NOA微通道内微管的定向控制和浓度。这种方法为纳米技术中生物分子马达的精确应用提供了新的可能性,使复杂的生物分子操作的微流体系统的设计进步。
    The microtubule-kinesin biomolecular motor system, which is vital for cellular function, holds significant promise for nanotechnological applications. In vitro gliding assays have demonstrated the ability to transport microcargo by propelling microtubules across kinesin-coated surfaces. However, the uncontrolled directional motion of microtubules has posed significant challenges, limiting the system\'s application for precise cargo delivery. Microfluidic devices provide a means to direct microtubule movement through their geometric features. Norland Optical Adhesive (NOA) is valued for its mold-free application in microfluidic device fabrication; however, microtubules often climb up channel walls, limiting controlled movement. In this study, a surface passivation method for NOA is introduced, using polyethylene glycol via a thiol-ene click reaction. This technique significantly improved the directional control and concentration of microtubules within NOA microchannels. This approach presents new possibilities for the precise application of biomolecular motors in nanotechnology, enabling advancements in the design of microfluidic systems for complex biomolecular manipulations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    用表面上的聚合物修饰细胞可以使它们在各种应用中获得或增强功能,其中原子转移自由基聚合(ATRP)由于其生物相容性而获得了显著的潜力。然而,从细胞表面特异性启动ATRP进行原位修饰仍然具有挑战性。这项研究建立了细菌表面引发的ATRP方法,并将其进一步应用于增强的Cr(VI)去除。通过用叠氮化物底物标记细胞表面很容易实现细胞表面特异性,在用叠氮化物-炔点击化学特异性锚定的炔基ATRP引发剂之后。然后,ATRP聚合从细胞表面开始,并将不同的聚合物成功地应用于原位改性。进一步的分析表明,用聚(4-乙烯基吡啶)和聚甲基丙烯酸钠改性希瓦氏菌可以提高重金属耐受性,并将Cr(VI)的去除率从0.088h-1提高到0.314h-1,提高了2.6倍。这项工作为细菌表面改性提供了新的思路,并将扩展ATRP在生物修复中的应用。
    Modifying cells with polymers on the surface can enable them to gain or enhance function with various applications, wherein the atom transfer radical polymerization (ATRP) has garnered significant potential due to its biocompatibility. However, specifically initiating ATRP from the cell surface for in-situ modification remains challenging. This study established a bacterial surface-initiated ATRP method and further applied it for enhanced Cr(VI) removal. The cell surface specificity was facilely achieved by cell surface labelling with azide substrates, following alkynyl ATRP initiator specifically anchoring with azide-alkyne click chemistry. Then, the ATRP polymerization was initiated from the cell surface, and different polymers were successfully applied to in-situ modification. Further analysis revealed that the modification of Shewanella oneidensis with poly (4-vinyl pyridine) and sodium polymethacrylate improved the heavy metal tolerance and enhanced the Cr(VI) removal rate of 2.6 times from 0.088 h-1 to 0.314 h-1. This work provided a novel idea for bacterial surface modification and would extend the application of ATRP in bioremediation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在环境条件下在靶残基处进行的肽和蛋白质的后期特异性和选择性多样化被认为是获得各种和丰富缀合物的最容易的途径。在这里,我们报告了使用烷基硫烷盐对半胱氨酸残基的正交修饰,在温和条件下具有优异的化学选择性和相容性,引入各种各样的功能结构。至关重要的是,多方面的生物缀合是通过可点击的手柄实现的,以结合结构上不同的功能分子。这两个步骤,一锅生物缀合法成功应用于标记牛血清白蛋白。因此,我们的技术是后期正交生物缀合的通用且强大的工具。
    Late-stage specific and selective diversifications of peptides and proteins performed at target residues under ambient conditions are recognized to be the most facile route to various and abundant conjugates. Herein, we report an orthogonal modification of cysteine residues using alkyl thianthreium salts, which proceeds with excellent chemoselectivity and compatibility under mild conditions, introducing a diverse array of functional structures. Crucially, multifaceted bioconjugation is achieved through clickable handles to incorporate structurally diverse functional molecules. This \"two steps, one pot\" bioconjugation method is successfully applied to label bovine serum albumin. Therefore, our technique is a versatile and powerful tool for late-stage orthogonal bioconjugation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目前小直径血管(ID<4mm)的替代金标准仍然是利用患者的自体血管,因为小直径血管移植物(SDVG)对弱内皮化的限制,内膜增生和低通畅。在这里,我们通过将工程化的内皮细胞囊泡应用于伪装血管移植物以增强血管重塑,创建了具有定制内皮化功能的SDVG。通过代谢糖工程用叠氮化物基团(ECVs-N3)修饰工程化的内皮细胞囊泡,以通过点击化学精确连接PCL-DBCO制成的血管移植物,从而制造ECVG(ECV-N3改进型SDVG),这有助于抑制血小板粘附和活化,促进ECs粘附和增强抗炎。此外,体内单细胞转录组分析表明,ECVG的细胞组成中ECs的比例超过了PCL,定制的内皮化能够将内皮细胞(ECs)转化为一些特定的ECs簇。其中一个特定的集群,Endo_C5群集,仅在ECVG中检测到。因此,我们的研究整合了来自天然ECs的ECVs-N3的工程化膜囊泡,通过规避活细胞的限制,在SDVG上进行定制的内皮化,并为构建损伤后血管重塑的替代内皮化提供了新的途径。
    Current gold standard for the replacement of small-diameter blood vessel (ID < 4 mm) is still to utilize the autologous vessels of patients due to the limitations of small-diameter vascular grafts (SDVG) on weak endothelialization, intimal hyperplasia and low patency. Herein, we create the SDVG with the tailored endothelialization by applying the engineered endothelial cell vesicles to camouflaging vascular grafts for the enhancement of vascular remodeling. The engineered endothelial cell vesicles were modified with azide groups (ECVs-N3) through metabolic glycoengineering to precisely link the vascular graft made of PCL-DBCO via click chemistry, and thus fabricating ECVG (ECVs-N3 modified SDVG), which assists inhibition of platelet adhesion and activation, promotion of ECs adhesion and enhancement of anti-inflammation. Furthermore, In vivo single-cell transcriptome analysis revealed that the proportion of ECs in the cell composition of ECVG surpassed that of PCL, and the tailored endothelialization enabled to convert endothelial cells (ECs) into some specific ECs clusters. One of the specific cluster, Endo_C5 cluster, was only detected in ECVG. Consequently, our study integrates the engineered membrane vesicles of ECVs-N3 from native ECs for tailored endothelialization on SDVG by circumventing the limitations of living cells, and paves a new way to construct the alternative endothelialization in vessel remodeling following injury.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    氟化硫交换(SuFEx)和氟化磷交换(PFEx)点击化学正在推进多个学科的研究。通过基因整合潜在的生物活性非天然氨基酸(Uaas),这些化学物质已经整合到蛋白质中,实现与生物大分子的精确共价连接,为新的应用铺平道路。然而,它们在蛋白质中的次优反应速率限制了有效性,和传统的小分子催化方法通常与生物系统或体内应用不相容。我们证明,在潜在的生物活性Uaa附近引入精氨酸可显着提高SuFEx和PFEx蛋白质之间的反应速率。这种方法在各种Uaas中都是有效的,目标残基,和蛋白质环境。值得注意的是,它还可以在酸性条件下进行有效的SuFEx反应,常见于某些细胞区室和肿瘤微环境,这通常会阻碍SuFEx反应。此外,我们开发了第一个共价细胞接合器,它通过精氨酸促进的共价相互作用而显著增强了自然杀伤细胞的活化。这些发现提供了机械见解,并提供了一种生物相容性策略来利用这些强大的化学物质来推进生物研究和开发新的生物治疗剂。
    Sulfur fluoride exchange (SuFEx) and phosphorus fluoride exchange (PFEx) click chemistries are advancing research across multiple disciplines. By genetically incorporating latent bioreactive unnatural amino acids (Uaas), these chemistries have been integrated into proteins, enabling precise covalent linkages with biological macromolecules and paving the way for new applications. However, their suboptimal reaction rates in proteins limit effectiveness, and traditional catalytic methods for small molecules are often incompatible with biological systems or in vivo applications. We demonstrated that introducing an arginine adjacent to the latent bioreactive Uaa significantly boosts SuFEx and PFEx reaction rates between proteins. This method is effective across various Uaas, target residues, and protein environments. Notably, it also enables efficient SuFEx reactions in acidic conditions, common in certain cellular compartments and tumor microenvironments, which typically hinder SuFEx reactions. Furthermore, we developed the first covalent cell engager that substantially enhances natural killer cell activation through improved covalent interaction facilitated by arginine. These findings provide mechanistic insights and offer a biocompatible strategy to harness these robust chemistries for advancing biological research and developing new biotherapeutics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    以亚色烯稠合的1,2,3-三唑基延伸的炔烃和2,3,4,6-四-O-乙酰基-β-d-吡喃葡萄糖基叠氮化物为原料,通过铜催化的叠氮化物-炔环加成(CuAAC)反应,合成了一系列新的1,2,3-三唑稠合的基于亚甲基的葡萄糖三唑缀合物。主要优点包括温和的反应条件,高产,良好的基材范围,更短的反应时间。在体外评估化合物对人致病性革兰氏阴性大肠杆菌和革兰氏阳性金黄色葡萄球菌的抗菌功效。发现化合物24j是最有效的分子,在大肠杆菌中具有17mm的抑制区(ZI)和25μgmL-1的最小抑制浓度(MIC),在金黄色葡萄球菌中具有16mm的ZI和25μgmL-1的MIC。此外,它以-9.4kcal/mol的结合亲和力显着抑制计算机中的大肠杆菌DNA促旋酶。在所有合成的化合物中,24i,24d,24e和24f对两种菌株均显示出显着的抗菌活性,并以良好的结合亲和力抑制了DNA-促旋酶。因此,这些1,2,3-三唑稠合色烯基葡萄糖三唑偶联物可能在最近的未来发展成为强大的抗菌剂,根据基于强抗菌性能和分子对接研究的构效关系。
    A series of new 1,2,3-triazole fused chromene based glucose triazole conjugates were synthesized from chromene fused 1,2,3-triazolyl extended alkyne and 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl azide in good to excellent yield by a copper catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The major advantages include mild reaction conditions, high yield, good substrate scope, and shorter reaction time. The antibacterial efficacy of the compounds were assessed in vitro against human pathogenic Gram-negative E. coli and Gram-positive S. aureus bacteria. Compound 24j was found to be the most potent molecule with zone of inhibition (ZI) of 17 mm and minimum inhibitory concentration (MIC) of 25 μg mL-1 in E. coli and ZI of 16 mm and MIC of 25 μg mL-1 in S. aureus. Also, it significantly inhibited E. coli DNA-gyrase in silico with a binding affinity of -9.4 kcal/mol. Among all the synthesized compounds, 24i, 24d, 24e and 24f showed significant antibacterial activity against both strains and inhibited DNA-gyrase in silico with good binding affinities. Hence, these 1,2,3-triazole fused chromene based glucose triazole conjugates may evolve to be powerful antibacterial agents in recent future, according to structure-activity relationships based on strong antibacterial properties and molecular docking studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在保持簇核的同时修饰原子级精确的纳米簇表面仍然是一个关键挑战。在这里,合成,结构,和两个具有八个表面叠氮化物部分的靶向Ag20纳米簇(NC)的性质,报告了[CO3@Ag20(StBu)10(m-N3-C6H4COO)8(DMF)4](1-m)和[CO3@Ag20(StBu)10(p-N3-C6H4COO)8(DMF)4](1-p),其中DMF是N,N-二甲基甲酰胺。这些AgNC被设计为进行簇表面应变促进的叠氮化物-炔环加成(CS-SPAAC)反应,向集群表面引入新功能。使用模型应变环辛炔筛选反应性。反应产物和母体簇通过UV-vis表征,FT-IR,和核磁共振波谱。通过单晶X射线衍射(SCXRD)分析证实了母体簇的结构和表面叠氮化物的存在。发现簇1-m和1-p适合CS-SPAAC反应并保留NC框架,为应用有效修改AgNC开辟了新的途径。
    Modifying atomically precise nanocluster surfaces while maintaining the cluster core remains a key challenge. Herein, the synthesis, structure, and properties of two targeted Ag20 nanoclusters (NCs) with eight surface azide moieties, [CO3@Ag20(StBu)10(m-N3-C6H4COO)8(DMF)4] (1-m) and [CO3@Ag20(StBu)10(p-N3-C6H4COO)8(DMF)4] (1-p) are reported, where DMF is N,N-dimethylformamide. These AgNCs are designed to undergo cluster surface strain-promoted azide-alkyne cycloaddition (CS-SPAAC) reactions, introducing new functionality to the cluster surface. Reactivity is screened using model strained cyclooctynes. Reaction products and parent clusters are characterized by UV-vis, FT-IR, and NMR spectroscopies. The structure of the parent clusters and presence of surface azides is confirmed by single crystal X-ray diffraction (SCXRD) analysis. Clusters 1-m and 1-p are found to be amenable to CS-SPAAC reactions with retention of the NC frameworks, opening new routes for efficient modification of AgNC for applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号