ChIP-seq

ChIP - seq
  • 文章类型: Journal Article
    染色质免疫沉淀随后测序(ChIP-Seq)允许鉴定DNA结合蛋白的基因组靶向。靶标下的切割和使用核酸酶(CUT&RUN)的释放通过包括核酸酶以消化感兴趣的蛋白质周围的DNA来修饰该过程。结果是更高的信噪比和减少的所需起始材料。这允许从少至500个细胞的高保真序列识别,能够对珍贵的组织样本或原代细胞类型进行染色质分析,以及不太丰富的染色质结合蛋白:所有这些都显着增加了通量。
    Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) allows for the identification of genomic targeting of DNA-binding proteins. Cleavage Under Targets and Release Using Nuclease (CUT&RUN) modifies this process by including a nuclease to digest DNA around a protein of interest. The result is a higher signal-to-noise ratio and decreased required starting material. This allows for high-fidelity sequence identification from as few as 500 cells, enabling chromatin profiling of precious tissue samples or primary cell types, as well as less abundant chromatin-binding proteins: all at significantly increased throughput.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    染色质免疫沉淀结合下一代测序(ChIP-Seq)允许以快速和全基因组的方式探测蛋白质-DNA结合。在这里,我们描述了预处理ChIP-Seq数据并分析蛋白质与DNA的差异结合以进行扰动实验所需的步骤。在这些实验中,不同的条件进行比较,以发现由刺激或治疗引起的潜在生物学机制。此外,我们使用本章中概述的步骤提供了样本分析。
    Chromatin immunoprecipitation in combination with next-generation sequencing (ChIP-Seq) allows probing of protein-DNA binding in a rapid and genome-wide fashion. Herein we describe the required steps to preprocess ChIP-Seq data and to analyze the differential binding of proteins to DNA for perturbation experiments. In these experiments, different conditions are compared to find the underlying biological mechanisms caused by the stimulus or treatment. In addition, we provide a sample analysis using the steps outlined in the chapter.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在过去的十年中,染色质免疫沉淀(ChIP)随后进行下一代测序(-seq)一直是研究DNA-蛋白质相互作用的最常见的基因组学方法。ChIP-seq技术在实验和计算上都成为标准。本章介绍了一个核心工作流程,涵盖了ChIP-seq数据的数据处理和初始分析步骤。我们提供了命令的分步协议以及完全组装的Snakemake工作流程。沿着协议,我们讨论关键的工具参数,质量控制,输出报告,和初步结果。
    Chromatin immunoprecipitation (ChIP) followed by next-generation sequencing (-seq) has been the most common genomics method for studying DNA-protein interactions in the last decade. ChIP-seq technology became standard both experimentally and computationally. This chapter presents a core workflow that covers data processing and initial analytical steps of ChIP-seq data. We provide a step-by-step protocol of the commands as well as a fully assembled Snakemake workflow. Along the protocol, we discuss key tool parameters, quality control, output reports, and preliminary results.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    对于组蛋白修饰的全基因组图谱,染色质免疫沉淀(ChIP)随后进行高通量测序仍然是基准方法。虽然交联的ChIP可以用于各种目标,天然ChIP主要用于强且直接的DNA相互作用物,例如组蛋白及其修饰。在这里,我们描述了一种可用于细胞和组织材料的原生ChIP协议。
    For the genome-wide mapping of histone modifications, chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing remains the benchmark method. While crosslinked ChIP can be used for all kinds of targets, native ChIP is predominantly used for strong and direct DNA interactors like histones and their modifications. Here we describe a native ChIP protocol that can be used for cells and tissue material.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    减数分裂过程中染色质经历广泛的重塑,导致基因表达和染色体组织的特定模式,它最终控制基本的减数分裂过程,如重组和同源染色体关联。通过分析小鼠精母细胞全基因组减数分裂特异性蛋白质的染色质结合位点,已经取得了最新的改变游戏规则的进展。然而,进一步的进展仍然高度依赖于在I期前期的特定阶段可靠地分离足够数量的精母细胞,我们描述了我们适用于快速,可靠地分离同步固定的小鼠精母细胞的方法组合。我们表明,从这些细胞中分离的染色质可用于通过ChIP-seq研究染色质结合位点。我们从合子细胞中的INO80ChIP-seq获得的高质量数据用于染色质结合位点的功能分析。
    Chromatin undergoes extensive remodeling during meiosis, leading to specific patterns of gene expression and chromosome organization, which ultimately controls fundamental meiotic processes such as recombination and homologous chromosome associations. Recent game-changing advances have been made by analysis of chromatin binding sites of meiotic specific proteins genome-wide in mouse spermatocytes. However, further progress is still highly dependent on the reliable isolation of sufficient quantities of spermatocytes at specific stages of prophase I. Here, we describe a combination of methodologies we adapted for rapid and reliable isolation of synchronized fixed mouse spermatocytes. We show that chromatin isolated from these cells can be used to study chromatin-binding sites by ChIP-seq. High-quality data we obtained from INO80 ChIP-seq in zygotene cells was used for functional analysis of chromatin-binding sites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    减数分裂重组是促进早期减数分裂同源染色体之间交换和遗传物质交换的关键过程。这涉及由Po11催化的受控双链断裂(DSB)形成。DSB在称为热点的特定基因组区域中表现出优先位置,它们的变异性与不同的Po11活动水平有关。我们改进了ChIP-Seq技术,叫做SPO-Seq,绘制酿酒酵母中Spo11特异性DSB的形成图。本章介绍了我们简化的方法以及用于处理数据并与现有DSB热点图进行比较的开发的生物信息学工具。通过这种实验和计算相结合的方法,我们的目标是加强我们的理解减数分裂重组和遗传交换过程中出芽酵母,通过应用一些修改,有可能将这种方法扩展到其他生物体。
    Meiotic recombination is a key process facilitating the formation of crossovers and the exchange of genetic material between homologous chromosomes in early meiosis. This involves controlled double-strand breaks (DSBs) formation catalyzed by Spo11. DSBs exhibit a preferential location in specific genomic regions referred to as hotspots, and their variability is tied to varying Spo11 activity levels. We have refined a ChIP-Seq technique, called SPO-Seq, to map Spo11-specific DSB formation in Saccharomyces cerevisiae. The chapter describes our streamlined approach and the developed bioinformatic tools for processing data and comparing with existing DSB hotspot maps. Through this combined experimental and computational approach, we aim to enhance our understanding of meiotic recombination and genetic exchange processes in budding yeast, with the potential to expand this methodology to other organisms by applying a few modifications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    绒山羊有两种毛囊,次级毛囊产生有价值的羊绒纤维用于纺织品。羊绒的生长表现出由光周期变化引起的季节性模式。转录因子在此过程中起着至关重要的作用。转录因子,冷冲击域,含C2(Csdc2)在调节细胞增殖和分化中起着至关重要的作用。我们先前的研究表明,Csdc2的表达在生长期到静止期期间会周期性变化。然而,Csdc2调节SHF生长的机制尚不清楚.这里,我们发现Csdc2的敲低抑制了毛乳头细胞的增殖。ChIP-Seq分析显示Csdc2在SHF中具有独特的DNA结合基序。通过对ChIP-Seq和RNA-Seq的联合分析,我们揭示了Csdc2的25个候选靶基因。值得注意的是,我们在山羊基因组1号染色体上的回旋引导受体2(Robo2)内发现了一个推定的Csdc2结合位点。此外,qRT-PCR和双荧光素酶报告分析证实了Csdc2对Robo2的正调控影响。这些发现拓展了毛囊转录调控网络的研究领域,提供对分子育种策略的见解,以提高山羊的羊绒产量。
    Cashmere goats possess two types of hair follicles, with the secondary hair follicles producing valuable cashmere fiber used for textiles. The growth of cashmere exhibits a seasonal pattern arising from photoperiod change. Transcription factors play crucial roles during this process. The transcription factor, cold-shock domain, containing C2 (Csdc2) plays a crucial role in modulating cell proliferation and differentiation. Our preceding research indicated that the expression of Csdc2 changes periodically during anagen to telogen. However, the mechanisms of Csdc2 in regulating SHF growth remain unclear. Here, we found that the knockdown of Csdc2 inhibits the proliferation of dermal papilla cells. ChIP-Seq analysis showed that Csdc2 had a unique DNA binding motif in SHFs. Through conjoint analysis of ChIP-Seq and RNA-Seq, we revealed a total of 25 candidate target genes of Csdc2. Notably, we discovered a putative Csdc2 binding site within roundabout guidance receptor 2 (Robo2) on chromosome 1 of the goat genome. Furthermore, qRT-PCR and dual-luciferase reporter assay confirmed Csdc2\'s positive regulatory influence on Robo2. These findings expand the research field of hair follicle transcriptional regulatory networks, offering insights into molecular breeding strategies to enhance cashmere production in goats.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    随着基因组测序技术的进步,在公共数据库中积累测序数据需要更健壮和适应性更强的数据分析工作流程.这里,我们展示了火箭芯片,它旨在通过允许研究人员轻松比较和交换ChIP-seq的不同组件来提供解决此问题的方法,CUT&RUN,以及CUT和标签数据分析,从而有助于确定可靠的分析方法。Rocketchip使研究人员能够有效地处理大型数据集,同时确保可重复性并允许重新分析现有数据。通过支持跨不同数据集和方法的比较分析,Rocketchip有助于科学发现的严谨性和可重复性。此外,Rocketchip作为基准算法的平台,允许研究人员确定最准确和有效的分析方法,以应用于他们的数据。在强调再现性和适应性时,Rocketchip代表了促进强大科学研究实践的重要一步。
    As genome sequencing technologies advance, the accumulation of sequencing data in public databases necessitates more robust and adaptable data analysis workflows. Here, we present Rocketchip, which aims to offer a solution to this problem by allowing researchers to easily compare and swap out different components of ChIP-seq, CUT&RUN, and CUT&Tag data analysis, thereby facilitating the identification of reliable analysis methodologies. Rocketchip enables researchers to efficiently process large datasets while ensuring reproducibility and allowing for the reanalysis of existing data. By supporting comparative analyses across different datasets and methodologies, Rocketchip contributes to the rigor and reproducibility of scientific findings. Furthermore, Rocketchip serves as a platform for benchmarking algorithms, allowing researchers to identify the most accurate and efficient analytical approaches to be applied to their data. In emphasizing reproducibility and adaptability, Rocketchip represents a significant step towards fostering robust scientific research practices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    随着下一代测序(NGS)的出现,捕获DNA基因座或RNA分子的生物学意义的实验技术已经成为研究全基因组规模的表观基因组和转录调控的基本工具。生成的数据量和分析的潜在复杂性凸显了对强大且易于使用的计算分析方法的需求,这些方法可以简化流程并提供有价值的生物学见解。我们的解决方案,aPEAch,是一个自动化管道,有助于DNA和RNA测序分析的端到端分析,包括小RNA测序,从评估输入样本文件的质量到通过利用生物数据中嵌入的丰富信息回答有意义的生物问题。我们的方法是在Python中实现的,基于模块化方法,使用户能够选择分析的路径和程度以及结果的表示。管道可以批量处理单个或多个重复的样品,允许所有样品的分析的易用性和可重复性。aPEAch提供了各种样本指标,如质量控制报告,碎片大小分布图,和所有中间输出文件,使管道能够使用不同的参数或算法重新执行,以及结果的出版可视化。此外,aPEAch无缝地纳入先进的无监督学习分析通过自动化聚类优化和可视化,从而提供对潜在生物学机制的宝贵见解。
    With the advent of next-generation sequencing (NGS), experimental techniques that capture the biological significance of DNA loci or RNA molecules have emerged as fundamental tools for studying the epigenome and transcriptional regulation on a genome-wide scale. The volume of the generated data and the underlying complexity regarding their analysis highlight the need for robust and easy-to-use computational analytic methods that can streamline the process and provide valuable biological insights. Our solution, aPEAch, is an automated pipeline that facilitates the end-to-end analysis of both DNA- and RNA-sequencing assays, including small RNA sequencing, from assessing the quality of the input sample files to answering meaningful biological questions by exploiting the rich information embedded in biological data. Our method is implemented in Python, based on a modular approach that enables users to choose the path and extent of the analysis and the representations of the results. The pipeline can process samples with single or multiple replicates in batches, allowing the ease of use and reproducibility of the analysis across all samples. aPEAch provides a variety of sample metrics such as quality control reports, fragment size distribution plots, and all intermediate output files, enabling the pipeline to be re-executed with different parameters or algorithms, along with the publication-ready visualization of the results. Furthermore, aPEAch seamlessly incorporates advanced unsupervised learning analyses by automating clustering optimization and visualization, thus providing invaluable insight into the underlying biological mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞粘附分子NEPH1是维持肾脏肾小球结构完整性和功能所必需的。在果蝇和秀丽隐杆线虫的神经系统中,它参与突触发生和轴突分支,这对于建立功能电路至关重要。在哺乳动物的神经系统中,Neph1的表达调控和功能尚未被探索。在这项研究中,我们提供了小鼠背根神经节(DRGs)和脊髓中Neph1表达的时空特征。在神经性阶段之后,Neph1在DRGs及其假定的脊髓背角靶标中广泛表达,包括GABA能和谷氨酸能神经元。有趣的是,我们发现PRRXL1是正确建立DRG-脊髓回路所需的同源结构域转录因子,在E14.5阻止Neph1在脊髓背侧浅层中的过早表达,但对DRGs或E16.5的任一结构没有调节作用。通过脊髓背侧的染色质免疫沉淀分析,我们确定了Neph1内含子内的四个PRRXL1结合区域,提示PRRXL1直接调节Neph1转录。我们还表明Neph1是分支所必需的,尤其是在远端神经突.一起,我们的工作表明,Prrxl1阻止Neph1在浅层背角的早期表达,提示Neph1可能是DRG-脊髓伤害性回路正确组装的下游效应基因。
    The cell-adhesion molecule NEPH1 is required for maintaining the structural integrity and function of the glomerulus in the kidneys. In the nervous system of Drosophila and C. elegans, it is involved in synaptogenesis and axon branching, which are essential for establishing functional circuits. In the mammalian nervous system, the expression regulation and function of Neph1 has barely been explored. In this study, we provide a spatiotemporal characterization of Neph1 expression in mouse dorsal root ganglia (DRGs) and spinal cord. After the neurogenic phase, Neph1 is broadly expressed in the DRGs and in their putative targets at the dorsal horn of the spinal cord, comprising both GABAergic and glutamatergic neurons. Interestingly, we found that PRRXL1, a homeodomain transcription factor that is required for proper establishment of the DRG-spinal cord circuit, prevents a premature expression of Neph1 in the superficial laminae of the dorsal spinal cord at E14.5, but has no regulatory effect on the DRGs or on either structure at E16.5. By chromatin immunoprecipitation analysis of the dorsal spinal cord, we identified four PRRXL1-bound regions within the Neph1 introns, suggesting that PRRXL1 directly regulates Neph1 transcription. We also showed that Neph1 is required for branching, especially at distal neurites. Together, our work showed that Prrxl1 prevents the early expression of Neph1 in the superficial dorsal horn, suggesting that Neph1 might function as a downstream effector gene for proper assembly of the DRG-spinal nociceptive circuit.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号