Cardiolipins

心磷脂
  • 文章类型: Journal Article
    背景:脂质如磷脂酸(PAs)和心磷脂(CLs)在反相液相色谱中存在强烈的拖尾峰,这需要低可检测性。它们通常通过亲水相互作用液相色谱(HILIC)进行分析,这阻碍了高通量脂质组学。因此,非常需要改进的分析方法,以便在单一色谱方法中获得更广泛的脂质凝集覆盖率。我们研究了碳酸氢铵(ABC)对峰不对称性和可检测性的影响,与常规BEHC18柱和HST-CSHC18柱上的甲酸铵(AFO)相比。
    结果:2.5mMABC缓冲液pH8与HST-CSHC18柱的组合产生了显着改善的结果,将PA16:0/18:1的10%峰高的不对称因子从8.4降低到1.6。此外,平均而言,与AFO和BEHC18柱相比,[M-H]-离子的峰高增加了54倍。我们证实了这种对其他强烈拖尾脂质的有益作用,具有可接近的磷酸盐部分,例如,心磷脂,磷脂酰肌醇磷酸酯,磷脂酰肌醇双磷酸酯,磷酸化神经酰胺和磷酸化鞘氨醇。此外,我们发现,当使用HST-CSHC18色谱柱时,在阴性模式下,磷脂和鞘脂的可检测性增加了28倍.该方法已成功应用于小鼠肝脏样本,以前未检测到的内源性磷脂可以用改进的色谱分离进行分析。
    结论:结论:在BEHC18和HST-CSHC18色谱柱上的RPLC-ESI-Q-TOF-MS系统上,使用2.5mMABC显著改善了PAs的峰形,并增强了脂质体在阴性模式下的可检测性.该方法通过一次单次注射提供了更广泛的脂质体覆盖,以阴性模式用于未来的脂质体应用。
    BACKGROUND: Lipids such as phosphatidic acids (PAs) and cardiolipins (CLs) present strongly tailing peaks in reversed phase liquid chromatography, which entails low detectability. They are usually analyzed by hydrophilic interaction liquid chromatography (HILIC), which hampers high-throughput lipidomics. Thus, there is a great need for improved analytical methods in order to obtain a broader coverage of the lipidome in a single chromatographic method. We investigated the effect of ammonium bicarbonate (ABC) on peak asymmetry and detectability, in comparison with ammonium formate (AFO) on both a conventional BEH C18 column and an HST-CSH C18 column.
    RESULTS: The combination of 2.5 mM ABC buffer pH 8 with an HST-CSH C18 column produced significantly improved results, reducing the asymmetry factor at 10 % peak height of PA 16:0/18:1 from 8.4 to 1.6. Furthermore, on average, there was up to a 54-fold enhancement in the peak height of its [M - H]- ion compared to AFO and the BEH C18 column. We confirmed this beneficial effect on other strongly tailing lipids, with accessible phosphate moieties e.g., cardiolipins, phosphatidylinositol phosphate, phosphatidylinositol bisphosphate, phosphorylated ceramide and phosphorylated sphingosine. Furthermore, we found an increased detectability of phospho- and sphingolipids up to 28 times in negative mode when using an HST-CSH C18 column. The method was successfully applied to mouse liver samples, where previously undetected endogenous phospholipids could be analyzed with improved chromatographic separation.
    CONCLUSIONS: In conclusion, the use of 2.5 mM ABC substantially improved the peak shape of PAs and enhanced the detectability of the lipidome in negative mode on an RPLC-ESI-Q-TOF-MS system on both BEH C18 and HST-CSH C18 columns. This method provides a wider coverage of the lipidome with one single injection for future lipidomic applications in negative mode.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    研究环境化学环境对脂质体分子行为的影响对于理解和操纵细胞活力以及脂质药物载体在各种环境中的能力至关重要。这里,我们设计并合成了一种称为Pyr-Py-N(PPN)的二次谐波发生(SHG)和荧光探针分子,具有膜靶向能力。我们使用PPN来研究由心磷脂组成的脂质囊泡对外源盐存在的反应。动力学行为,包括PPN在由心磷脂组成的单层小囊泡(SUV)表面的吸附和包埋,进行了分析。还监测SUV对添加NaCl的响应。囊泡尺寸的快速减小可以通过源自位于囊泡表面上的PPN的SHG发射的快速下降来证明。
    Investigating the influence of the ambient chemical environment on molecular behaviors in liposomes is crucial for understanding and manipulating cellular vitality as well as the capabilities of lipid drug carriers in various environments. Here, we designed and synthesized a second harmonic generation (SHG) and fluorescence probe molecule called Pyr-Py+-N+ (PPN), which possesses membrane-targeting capability. We employed PPN to investigate the response of lipid vesicles composed of cardiolipin to the presence of exogenous salt. The kinetic behaviors, including the adsorption and embedding of PPN on the surface of small unilamellar vesicles (SUVs) composed of cardiolipin, were analyzed. The response of the SUVs to the addition of NaCl was also monitored. A rapid decrease in vesicle size can be evidenced through the rapid drop in SHG emission originating from PPN located on the vesicle surface.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    革兰氏阴性菌的外膜是化学和物理应激的屏障。磷脂在内膜和外膜之间的运输一直是一个密集的研究领域,在大肠杆菌K-12中,它最近被证明是由YhdP介导的,TamB,YdbH,它们被建议为磷脂扩散提供疏水通道,YhdP和TamB扮演主要角色。然而,YhdP和TamB具有不同的表型,表明不同的功能。目前尚不清楚这些功能是否与磷脂代谢有关。我们调查了由fadR缺失引起的合成冷敏感性,控制脂肪酸降解和不饱和脂肪酸产生的转录调节因子,和yhdP,但不是通过ΔtamBΔfadR或ΔydbHΔfadR。tamB的缺失否认了ΔyhdPΔfadR冷敏感性,进一步证明了表型与这些基因之间的功能多样化有关。ΔyhdPΔfadR菌株在转移到非允许温度时显示心磷脂的更大增加,并且遗传降低心磷脂水平可以抑制冷敏感性。这些数据还揭示了大肠杆菌中心磷脂合酶之间的定性差异,因为clsA和clsC的缺失会抑制冷敏感性,而clsB的缺失不会。此外,增加的脂肪酸饱和度对于冷敏感性是必需的,并且在遗传上或通过补充油酸降低该水平会抑制ΔyhdPΔfadR菌株的冷敏感性。一起,我们的数据清楚地表明,YhdP和TamB之间的功能多样化与磷脂代谢有关。尽管间接调节作用是可能的,我们支持简约的假设,即YhdP和TamB具有不同的磷脂-底物转运偏好。因此,根据YhdP和TamB的丰度或活性的调节,我们的数据提供了一种潜在的机制,可以根据变化的条件独立控制内膜和外膜的磷脂组成.
    The outer membrane of gram-negative bacteria is a barrier to chemical and physical stress. Phospholipid transport between the inner and outer membranes has been an area of intense investigation and, in E. coli K-12, it has recently been shown to be mediated by YhdP, TamB, and YdbH, which are suggested to provide hydrophobic channels for phospholipid diffusion, with YhdP and TamB playing the major roles. However, YhdP and TamB have different phenotypes suggesting distinct functions. It remains unclear whether these functions are related to phospholipid metabolism. We investigated a synthetic cold sensitivity caused by deletion of fadR, a transcriptional regulator controlling fatty acid degradation and unsaturated fatty acid production, and yhdP, but not by ΔtamB ΔfadR or ΔydbH ΔfadR. Deletion of tamB recuses the ΔyhdP ΔfadR cold sensitivity further demonstrating the phenotype is related to functional diversification between these genes. The ΔyhdP ΔfadR strain shows a greater increase in cardiolipin upon transfer to the non-permissive temperature and genetically lowering cardiolipin levels can suppress cold sensitivity. These data also reveal a qualitative difference between cardiolipin synthases in E. coli, as deletion of clsA and clsC suppresses cold sensitivity but deletion of clsB does not. Moreover, increased fatty acid saturation is necessary for cold sensitivity and lowering this level genetically or through supplementation of oleic acid suppresses the cold sensitivity of the ΔyhdP ΔfadR strain. Together, our data clearly demonstrate that the diversification of function between YhdP and TamB is related to phospholipid metabolism. Although indirect regulatory effects are possible, we favor the parsimonious hypothesis that YhdP and TamB have differential phospholipid-substrate transport preferences. Thus, our data provide a potential mechanism for independent control of the phospholipid composition of the inner and outer membranes in response to changing conditions based on regulation of abundance or activity of YhdP and TamB.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肾缺血/再灌注是一种严重的疾病,不仅会导致急性肾损伤,高死亡率的严重临床综合征,但也是肾脏移植或其他肾脏手术不可避免的一部分。缺血/再灌注期间氧水平的变化,即缺氧/复氧,破坏线粒体代谢并诱导导致细胞死亡的结构变化。一种标志性的线粒体磷脂,心磷脂,在线粒体稳态中具有许多重要作用,是缺氧/复氧诱导的线粒体损伤的关键参与者之一。在这项研究中,我们分析了缺氧/复氧对人肾近曲小管上皮细胞(RPTEC)心磷脂的影响,以及它们的新陈代谢和线粒体功能。将RPTEC细胞置于2%氧气气氛的缺氧室中24小时以诱导缺氧;然后,它们被替换回到正常的生长条件下24小时的复氧。令人惊讶的是,24小时后,缺氧心磷脂水平大幅增加,并在复氧后24小时保持高于对照水平。这可以通过心磷脂合酶和溶血心磷脂酰基转移酶1(LCLAT1)基因表达和蛋白质水平的显着升高来解释。同时,缺氧/复氧会降低ADP依赖的线粒体呼吸速率和氧化磷酸化能力,并增加活性氧的产生。我们的发现表明,缺氧/复氧诱导心磷脂重塑,以保护线粒体功能的方式减少线粒体氧化磷酸化。
    Renal ischemia/reperfusion is a serious condition that not only causes acute kidney injury, a severe clinical syndrome with high mortality, but is also an inevitable part of kidney transplantation or other kidney surgeries. Alterations of oxygen levels during ischemia/reperfusion, namely hypoxia/reoxygenation, disrupt mitochondrial metabolism and induce structural changes that lead to cell death. A signature mitochondrial phospholipid, cardiolipin, with many vital roles in mitochondrial homeostasis, is one of the key players in hypoxia/reoxygenation-induced mitochondrial damage. In this study, we analyze the effect of hypoxia/reoxygenation on human renal proximal tubule epithelial cell (RPTEC) cardiolipins, as well as their metabolism and mitochondrial functions. RPTEC cells were placed in a hypoxic chamber with a 2% oxygen atmosphere for 24 h to induce hypoxia; then, they were replaced back into regular growth conditions for 24 h of reoxygenation. Surprisingly, after 24 h, hypoxia cardiolipin levels substantially increased and remained higher than control levels after 24 h of reoxygenation. This was explained by significantly elevated levels of cardiolipin synthase and lysocardiolipin acyltransferase 1 (LCLAT1) gene expression and protein levels. Meanwhile, hypoxia/reoxygenation decreased ADP-dependent mitochondrial respiration rates and oxidative phosphorylation capacity and increased reactive oxygen species generation. Our findings suggest that hypoxia/reoxygenation induces cardiolipin remodeling in response to reduced mitochondrial oxidative phosphorylation in a way that protects mitochondrial function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    缺血后血流恢复时发生心肌再灌注损伤,挽救缺血组织的重要过程。然而,这种现象错综复杂,以各种有害影响为特征。缺血再灌注损伤中的组织损伤起因于各种因素,包括活性氧的产生,促炎免疫细胞在缺血组织中的隔离,内质网应激的诱导,以及缺血后毛细血管无回流的发生。分泌型磷脂酶A2(sPLA2)通过从膜磷脂中释放游离花生四烯酸在类花生酸途径中起关键作用\'sn-2位置。这种释放的花生四烯酸作为各种类二十烷酸生物合成酶的底物,包括环氧合酶,脂氧合酶,和细胞色素P450,最终导致炎症和再灌注损伤的风险升高。因此,sPLA2的激活与心肌缺血再灌注损伤(MIRI)中观察到的增强和加速损伤直接相关。目前,针对sPLA2的药物临床试验正在进行中,为干预提供了有希望的途径.心磷脂(CL)在维持线粒体功能中起着至关重要的作用,其改变与MIRI中观察到的线粒体功能障碍密切相关。本文提供了关于MIRI线粒体功能障碍的CL修饰的关键分析,及其相关的分子机制。此外,它深入研究了预防或缓解MIRI的各种药理学方法,无论是通过直接靶向线粒体CL还是通过间接手段。
    Myocardial reperfusion injury occurs when blood flow is restored after ischemia, an essential process to salvage ischemic tissue. However, this phenomenon is intricate, characterized by various harmful effects. Tissue damage in ischemia-reperfusion injury arises from various factors, including the production of reactive oxygen species, the sequestration of proinflammatory immune cells in ischemic tissues, the induction of endoplasmic reticulum stress, and the occurrence of postischemic capillary no-reflow. Secretory phospholipase A2 (sPLA2) plays a crucial role in the eicosanoid pathway by releasing free arachidonic acid from membrane phospholipids\' sn-2 position. This liberated arachidonic acid serves as a substrate for various eicosanoid biosynthetic enzymes, including cyclooxygenases, lipoxygenases, and cytochromes P450, ultimately resulting in inflammation and an elevated risk of reperfusion injury. Therefore, the activation of sPLA2 directly correlates with the heightened and accelerated damage observed in myocardial ischemia-reperfusion injury (MIRI). Presently, clinical trials are in progress for medications aimed at sPLA2, presenting promising avenues for intervention. Cardiolipin (CL) plays a crucial role in maintaining mitochondrial function, and its alteration is closely linked to mitochondrial dysfunction observed in MIRI. This paper provides a critical analysis of CL modifications concerning mitochondrial dysfunction in MIRI, along with its associated molecular mechanisms. Additionally, it delves into various pharmacological approaches to prevent or alleviate MIRI, whether by directly targeting mitochondrial CL or through indirect means.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    巴特综合征(BTHS)是一种致命的罕见遗传疾病,导致心脏功能障碍,严重的骨骼肌无力,免疫问题和生长延迟。TAFAZZIN基因突变,负责磷脂心磷脂(CL)的重塑,导致线粒体膜异常,包括成熟CL酰基组成的改变和单心磷脂(MLCL)的存在。MLCL/CL比率的急剧增加是BTHS患者的标志,与线粒体生物能学功能障碍和膜超微结构改变有关。目前尚无针对BTHS的特定疗法。这里,我们发现,从TAFAZZIN敲低(TazKD)小鼠分离的心脏线粒体呈现异常的超微结构膜形态,空泡的积累,亲裂变条件和线粒体自噬缺陷。有趣的是,我们发现,用CL靶向的小肽(命名为SS-31)对Tazzin缺陷型心脏的体内治疗能够通过影响参与动态过程和线粒体自噬的特定蛋白来恢复线粒体形态.这与我们先前的数据一致,该数据显示,在相同的药物治疗下,TazKD小鼠的线粒体呼吸效率与超复合物组织增加相关。总而言之,我们的发现证实了SS-31在BTHS动物模型中改善tafazzin缺陷的功能失调线粒体的有益作用。
    Barth syndrome (BTHS) is a lethal rare genetic disorder, which results in cardiac dysfunction, severe skeletal muscle weakness, immune issues and growth delay. Mutations in the TAFAZZIN gene, which is responsible for the remodeling of the phospholipid cardiolipin (CL), lead to abnormalities in mitochondrial membrane, including alteration of mature CL acyl composition and the presence of monolysocardiolipin (MLCL). The dramatic increase in the MLCL/CL ratio is the hallmark of patients with BTHS, which is associated with mitochondrial bioenergetics dysfunction and altered membrane ultrastructure. There are currently no specific therapies for BTHS. Here, we showed that cardiac mitochondria isolated from TAFAZZIN knockdown (TazKD) mice presented abnormal ultrastructural membrane morphology, accumulation of vacuoles, pro-fission conditions and defective mitophagy. Interestingly, we found that in vivo treatment of TazKD mice with a CL-targeted small peptide (named SS-31) was able to restore mitochondrial morphology in tafazzin-deficient heart by affecting specific proteins involved in dynamic process and mitophagy. This agrees with our previous data showing an improvement in mitochondrial respiratory efficiency associated with increased supercomplex organization in TazKD mice under the same pharmacological treatment. Taken together our findings confirm the beneficial effect of SS-31 in the amelioration of tafazzin-deficient dysfunctional mitochondria in a BTHS animal model.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脂质是膜蛋白结构和功能的关键调节剂。然而,研究蛋白质-脂质相互作用的热力学是具有挑战性的,因为脂质可以同时在不同的位点以不同的特异性结合膜蛋白。这里,我们使用单突变体和双突变体开发了一种天然质谱(MS)方法,以测量水通道蛋白Z(AqpZ)上特定残基对心磷脂(CL)结合的相对能量贡献。我们首先在AqpZ上突变了潜在的脂质结合残基,和混合的突变和野生型蛋白与CL。通过使用天然MS在单一光谱中同时解析与突变体和野生型蛋白的脂质结合,我们直接确定了CL结合的相对亲和力,从而揭示了由突变引起的脂质结合的相对吉布斯自由能变化。比较不同的突变体显示,W14有助于最紧密的CL结合位点,R224有助于较低的亲和力位点。使用双突变循环,我们研究了W14和R224位点对CL结合的协同作用。总的来说,这种新颖的天然MS方法提供了对脂质与膜蛋白特异性位点结合的独特见解。
    Lipids are critical modulators of membrane protein structure and function. However, it is challenging to investigate the thermodynamics of protein-lipid interactions because lipids can simultaneously bind membrane proteins at different sites with different specificities. Here, we developed a native mass spectrometry (MS) approach using single and double mutants to measure the relative energetic contributions of specific residues on Aquaporin Z (AqpZ) toward cardiolipin (CL) binding. We first mutated potential lipid-binding residues on AqpZ, and mixed mutant and wild-type proteins together with CL. By using native MS to simultaneously resolve lipid binding to the mutant and wild-type proteins in a single spectrum, we directly determined the relative affinities of CL binding, thereby revealing the relative Gibbs free energy change for lipid binding caused by the mutation. Comparing different mutants revealed that W14 contributes to the tightest CL binding site, with R224 contributing to a lower affinity site. Using double mutant cycling, we investigated the synergy between W14 and R224 sites on CL binding. Overall, this novel native MS approach provides unique insights into the binding of lipids to specific sites on membrane proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    临床研究表明,钠-葡萄糖-转运蛋白2抑制剂对射血分数保留的心力衰竭(HFpEF)患者心血管死亡风险的有益作用。然而,心脏保护的潜在过程仍不清楚.本研究集中在建立HFpEF的大鼠模型中,empagliflozin(Empa)对心肌功能的影响,并分析了潜在的分子机制。
    肥胖ZSF1(Zucker脂肪和自发性高血压)大鼠被随机分配到标准护理(HFpEF,n=18)或Empa(HFpEF/Empa,n=18)。ZSF1瘦老鼠(con,n=18)作为健康对照。在基线和4周和8周后进行超声心动图检查,分别。治疗8周后,血流动力学是侵入性测量的,评估线粒体功能,收集心肌组织进行分子和组织学分析或透射电镜观察.
    在HFpEFEmpa中,舒张功能显着改善(E/é:con:17.5±2.8;HFpEF:24.4±4.6;P<0.001vscon;HFpEF/Empa:19.4±3.2;HFpEF<0.001)。这伴随着改善的血流动力学和钙处理以及减少的炎症,肥大,和纤维化。蛋白质组学分析显示了线粒体氧化磷酸化中涉及的蛋白质的主要变化。HFpEF的心脏线粒体呼吸显着受损,但通过Empa恢复(Vmax复合物IV:con:0.18±0.07mmolO2/s/mg;HFpEF:0.13±0.05mmolO2/s/mg;P<0.041vscon;HFpEF/Empa:0.21±0.05mmolO2/s/mg;P=0.012vsHFpEF),线粒体含量无变化。心磷脂的表达,呼吸链必需的稳定性/功能性介导磷脂,HFpEF显着降低,但通过Empa逆转(con:15.9±1.7nmol/mg蛋白;HFpEF:12.5±1.8nmol/mg蛋白;P=0.002vs.con;HFpEF/Empa:14.5±1.8nmol/mg蛋白;P=0.03vs.HFpEF)。透射电子显微镜显示HFpEF中线粒体的大小减小,这是由Empa恢复的。
    该研究证明了Empa对舒张功能的有益作用,血流动力学,炎症,和HFpEF大鼠模型的心脏重塑。由于调节的心磷脂和改善的钙处理,这些作用是通过改善的线粒体呼吸能力来介导的。
    UNASSIGNED: Clinical studies demonstrated beneficial effects of sodium-glucose-transporter 2 inhibitors on the risk of cardiovascular death in patients with heart failure with preserved ejection fraction (HFpEF). However, underlying processes for cardioprotection remain unclear. The present study focused on the impact of empagliflozin (Empa) on myocardial function in a rat model with established HFpEF and analyzed underlying molecular mechanisms.
    UNASSIGNED: Obese ZSF1 (Zucker fatty and spontaneously hypertensive) rats were randomized to standard care (HFpEF, n=18) or Empa (HFpEF/Empa, n=18). ZSF1 lean rats (con, n=18) served as healthy controls. Echocardiography was performed at baseline and after 4 and 8 weeks, respectively. After 8 weeks of treatment, hemodynamics were measured invasively, mitochondrial function was assessed and myocardial tissue was collected for either molecular and histological analyses or transmission electron microscopy.
    UNASSIGNED: In HFpEF Empa significantly improved diastolic function (E/é: con: 17.5±2.8; HFpEF: 24.4±4.6; P<0.001 versus con; HFpEF/Empa: 19.4±3.2; P<0.001 versus HFpEF). This was accompanied by improved hemodynamics and calcium handling and by reduced inflammation, hypertrophy, and fibrosis. Proteomic analysis demonstrated major changes in proteins involved in mitochondrial oxidative phosphorylation. Cardiac mitochondrial respiration was significantly impaired in HFpEF but restored by Empa (Vmax complex IV: con: 0.18±0.07 mmol O2/s/mg; HFpEF: 0.13±0.05 mmol O2/s/mg; P<0.041 versus con; HFpEF/Empa: 0.21±0.05 mmol O2/s/mg; P=0.012 versus HFpEF) without alterations of mitochondrial content. The expression of cardiolipin, an essential stability/functionality-mediating phospholipid of the respiratory chain, was significantly decreased in HFpEF but reverted by Empa (con: 15.9±1.7 nmol/mg protein; HFpEF: 12.5±1.8 nmol/mg protein; P=0.002 versus con; HFpEF/Empa: 14.5±1.8 nmol/mg protein; P=0.03 versus HFpEF). Transmission electron microscopy revealed a reduced size of mitochondria in HFpEF, which was restored by Empa.
    UNASSIGNED: The study demonstrates beneficial effects of Empa on diastolic function, hemodynamics, inflammation, and cardiac remodeling in a rat model of HFpEF. These effects were mediated by improved mitochondrial respiratory capacity due to modulated cardiolipin and improved calcium handling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    淀粉样蛋白β1-42(Aβ1-42)肽在额叶中的突然聚集是阿尔茨海默病(AD)的潜在原因。由Aβ1-42形成的富含β-片层的寡聚体和原纤维发挥高细胞毒性。越来越多的证据表明,脂质可以独特地改变Aβ1-42聚集体的二级结构和毒性。同时,决定淀粉样蛋白聚集体毒性差异的潜在分子机制尚不清楚.使用一组分子和生物物理测定来确定在胆固醇存在下Aβ1-42聚集体形成的分子机制,心磷脂,和磷脂酰胆碱发挥细胞毒性。我们的发现表明,暴露于在具有不同化学结构的脂质存在下形成的Aβ1-42原纤维的大鼠神经元细胞在内质网(ER)和线粒体(MT)中表现出截然不同的未折叠蛋白反应(UPR)的幅度和动态。我们发现暴露于Aβ1-42的细胞中MT和ER中UPR的相反动力学:在无脂环境中形成的心磷脂原纤维和Aβ1-42聚集体。我们还发现Aβ1-42:磷脂酰胆碱原纤维上调ERUPR同时下调MT的UPR反应,而Aβ1-42:胆固醇原纤维抑制ER的UPR反应并上调MT的UPR反应。我们还观察到ROS的产生逐渐增加,破坏线粒体膜和其他细胞器,最终导致细胞死亡。
    Abrupt aggregation of amyloid β1-42 (Aβ1-42) peptide in the frontal lobe is the expected underlying cause of Alzheimer\'s disease (AD). β-Sheet-rich oligomers and fibrils formed by Aβ1-42 exert high cell toxicity. A growing body of evidence indicates that lipids can uniquely alter the secondary structure and toxicity of Aβ1-42 aggregates. At the same time, underlying molecular mechanisms that determine this difference in toxicity of amyloid aggregates remain unclear. Using a set of molecular and biophysical assays to determine the molecular mechanism by which Aβ1-42 aggregates formed in the presence of cholesterol, cardiolipin, and phosphatidylcholine exert cell toxicity. Our findings demonstrate that rat neuronal cells exposed to Aβ1-42 fibrils formed in the presence of lipids with different chemical structure exert drastically different magnitude and dynamic of unfolded protein response (UPR) in the endoplasmic reticulum (ER) and mitochondria (MT). We found that the opposite dynamics of UPR in MT and ER in the cells exposed to Aβ1-42: cardiolipin fibrils and Aβ1-42 aggregates formed in a lipid-free environment. We also found that Aβ1-42: phosphatidylcholine fibrils upregulated ER UPR simultaneously downregulating the UPR response of MT, whereas Aβ1-42: cholesterol fibrils suppressed the UPR response of ER and upregulated UPR response of MT. We also observed progressively increasing ROS production that damages mitochondrial membranes and other cell organelles, ultimately leading to cell death.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    心功能不全,内毒素血症的早期并发症,是重症监护病房死亡的主要原因.目前尚无针对这种心脏功能障碍的特定疗法。这里,我们表明,在内毒素血症期间,N末端gasderminD(GSDMD-N)通过与复合物II产生的活性氧(ROS)氧化的心磷脂直接相互作用,从而引发线粒体凋亡孔和心功能障碍。胱天蛋白酶-4/11启动GSDMD-N孔,其随后通过NLRP3炎症的上调和活化通过进一步产生ROS而被扩增。GSDMD-N孔在BAX和VDAC1凋亡孔之前形成,并进一步掺入线粒体膜内的BAX和VDAC1寡聚体中以加剧凋亡过程。我们的发现确定氧化心磷脂是内毒素诱导的心肌功能障碍(EIMD)过程中心肌细胞线粒体中GSDMD-N的确定目标,心磷脂氧化的调节可能是疾病早期预防EIMD的治疗靶点。
    Cardiac dysfunction, an early complication of endotoxemia, is the major cause of death in intensive care units. No specific therapy is available at present for this cardiac dysfunction. Here, we show that the N-terminal gasdermin D (GSDMD-N) initiates mitochondrial apoptotic pore and cardiac dysfunction by directly interacting with cardiolipin oxidized by complex II-generated reactive oxygen species (ROS) during endotoxemia. Caspase-4/11 initiates GSDMD-N pores that are subsequently amplified by the upregulation and activation of NLRP3 inflammation through further generation of ROS. GSDMD-N pores form prior to BAX and VDAC1 apoptotic pores and further incorporate into BAX and VDAC1 oligomers within mitochondria membranes to exacerbate the apoptotic process. Our findings identify oxidized cardiolipin as the definitive target of GSDMD-N in mitochondria of cardiomyocytes during endotoxin-induced myocardial dysfunction (EIMD), and modulation of cardiolipin oxidation could be a therapeutic target early in the disease process to prevent EIMD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号