Carbon nanotubes

碳纳米管
  • 文章类型: Journal Article
    我们设计并制备了用于铝电池(ABs)的ZnSe/CoSe2@NC/CNTs(ZCNC)正极材料。ZCN(ZnSe/CoSe2@NC)通过交织的碳纳米管(CNT)导电网络连接以形成串珠结构。CNT和由有机配体碳化形成的碳有利于提高材料的导电性并减少循环过程中的结构损伤。在异质结构界面处产生的内部电场可以促进电子/离子的转移。这种特殊的结构促进了ZCNC优异的电化学性能。在100mA/g时,第一次放电的比容量达到338mAh/g,而500次循环后的比容量仍然达到217mAh/g。与ZCN和CN(CoSe2@NC)相比,它显示了巨大的优势。
    We designed and prepared the ZnSe/CoSe2@NC/CNTs (ZCNC) cathode material for aluminum batteries (ABs). The ZCN (ZnSe/CoSe2@NC) is connected by the interwoven carbon nanotube (CNT) conductive network to form a beaded structure. CNTs and the carbon formed by carbonization of organic ligands is beneficial to improving the electrical conductivity of the material and reducing structural damage during cycling. The internal electric field generated at the interface of heterostructures can promote the transfer of electrons/ions. This special structure promotes ZCNC excellent electrochemical properties. At 100 mA/g, the specific capacity of the first discharge reaches 338 mAh/g, while the specific capacity after 500 cycles still reaches 217 mAh/g. Compared with ZCN and CN(CoSe2@NC), it demonstrates a great advantage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    碳纳米管的分散性差极大地阻碍了它们的实际应用。在这里,实现了多壁碳纳米管(MWCNT)在过氧二硫酸盐(PDS)中的长期稳定分散。40mgL-1的MWCNT在超声处理(US/PDS)后在64分钟内通过PDS完全分散,并且稳定分散体保持至少20天。机械上,US在纳米材料上产生了缺陷,PDS起源的自由基攻击了这些缺陷,从而引入了含O的部分(─OH和─COOH)。有趣的是,最初在pH7和3.8下通过US/PDS对MWCNT的分散效率相当,但低于最初的pH值12。•OH和SO4•-均在碱性条件下产生,而SO4•-是在整个分散期间最初在pH7和3.8时的主要自由基。最初在pH为12的MWCNT的更强分散是由于主要以-OH(46.32%)而不是-COOH(24.19%)形式的含O部分的更大量导致的。这种差异通过氢键更强烈地促进MWCNT-水相互作用,从而增强分散。值得注意的是,在分散过程中MWCNT没有发生明显的质量损失。总的来说,所开发的方法以可以显着扩展其应用的方式实现了MWCNT的长期稳定分散。
    Poor dispersibility of carbon nanotubes greatly hinders their practical applications. Herein, a long-term stable dispersion of multiwalled carbon nanotubes (MWCNTs) in peroxydisulfate (PDS) is achieved. MWCNTs at 40 mg L-1 are completely dispersed by PDS upon ultrasonication (US/PDS) within 64 min and a stable dispersion is maintained at least 20 days. Mechanistically, US created defects on the nanomaterial and PDS-origin free radicals attacked these defects to introduce O-containing moieties (─OH and ─COOH). Interestingly, dispersion efficiency of MWCNTs by US/PDS initially at pH 7 and 3.8 is comparable, but lower than that initially at pH 12. Both •OH and SO4 •- are produced under alkaline condition, while SO4 •- is the dominant free radicals initially at pH 7 and 3.8 during the whole dispersion period. Stronger dispersion of MWCNTs initially at pH 12 resulted from greater amounts of O-containing moieties mainly in ─OH (46.32%) rather than ─COOH (24.19%) form. This differential more strongly promotes MWCNTs-water interaction via hydrogen bonding, thereby enhancing the dispersion. Notably, no significant mass loss of MWCNTs occurred during dispersion. Overall, the developed method achieves long-term stable dispersion of MWCNTs in a manner that can significantly extend their applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    掺杂和碳封装改性已被证明是增强电池的锂存储性能的有效方法。水热法和球磨是常用的材料合成方法。在这项研究中,通过这两种方法的结合,合成了富含碳纳米管(CNTs)的导电管状网络连接和封装SnO2-MoS2@CNTs(SMC)的复合阳极材料。在这个高度导电的网络中,纳米SnO2颗粒以层状结构均匀分散和嵌入MoS2中,获得的SnO2-MoS2复合材料被碳纳米管的管状网络紧密连接和包封。值得注意的是,层状MoS2的掺入不仅有效地锚定了SnO2纳米颗粒,但由于层间间距较大,也为锂离子运动提供了更广阔的空间。CNT的导电网络缩短了电子和Li+的扩散路径并提供了更多的扩散通道。SnO2-MoS2@CNT纳米复合材料的可逆容量在0.2Ag-1下循环320次后保持在1069.3mAhg-1,并且表现出优异的长期循环稳定性,在1.0Ag-1下1000次循环后保持904.5mAhg-1。复合材料表现出优异的伪电容贡献率性能,在2.0mVs-1时的贡献率为87%。结果表明,SnO2-MoS2@CNTs具有优异的电化学储锂性能,是一种有前途的锂离子电池负极材料。
    Doping and carbon encapsulation modifications have been proven to be effective methods for enhancing the lithium storage performance of batteries. The hydrothermal method and ball milling are commonly used methods for material synthesis. In this study, a composite anode material rich in carbon nanotubes (CNTs) conductive tubular network connection and encapsulation of SnO2-MoS2@CNTs (SMC) was synthesized by combining these two methods. In this highly conductive network, nano-SnO2 particles are uniformly dispersed and embedded in MoS2 with a layered structure, and the obtained SnO2-MoS2 composite material is tightly connected and encapsulated by the tubular network of CNTs. It is worth noting that the incorporation of layered MoS2 not only effectively anchors the SnO2 nanoparticles, but also provides a broader space for lithium-ion movement due to the larger interlayer spacing. The conductive network of CNTs shortens the diffusion path of electrons and Li+ and provides more diffusion channels. The reversible capacity of the SnO2-MoS2@CNTs nanocomposite material remains at 1069.3 mA h g-1 after 320 cycles at 0.2 A g-1, and it exhibits excellent long-term cycling stability, maintaining 904.5 mA h g-1 after 1000 cycles at 1.0 A g-1. The composite material demonstrates excellent pseudocapacitive contribution rate performance, with a contribution rate of 87% at 2.0 mV s-1. The results indicate that SnO2-MoS2@CNTs has excellent electrochemical lithium storage performance and is a promising anode material for lithium-ion batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    塑料垃圾污染是严重的环境问题,废塑料的催化热解是解决这一问题的有效途径。以硝酸铁和硝酸镍为催化剂,通过一步催化热解低密度聚乙烯(LDPE)废塑料制备碳纳米管(CNTs)。详细剖析了CNTs的成长机理。TPO,XRD,SEM和拉曼分析表明,增加Ni含量有助于生产具有良好形貌和高石墨化程度的碳纳米管。Fe含量的增加有助于提高CNT的产率。FeNi12-CNT-800的外径和内径约为21nm和8nm,长度为18.9μm,分别。分析LDPE热解气体以确定CNT生长所需的主要碳源是C2H4。C2H4在FeNi合金上的吸附和分解过程揭示了碳纳米管的生长机理,基于密度泛函理论计算。提出了三种成长模子来解释CNTs管状形状的差别。由于存在磁性,FeNi12-CNT-800用于从废水中去除微塑料。PVC可以从废水中快速去除,在20分钟时去除100%。本研究为废旧塑料的回收和处理提供了有效途径。
    Plastic waste pollution is the serious environmental problem, and catalytic pyrolysis of waste plastics is an effective way to solve this problem. Carbon nanotubes (CNTs) are prepared by catalytic pyrolysis of low-density polyethylene (LDPE) waste plastics by one-stage method using iron nitrate and nickel nitrate as catalyst. The growth mechanism of CNTs is analyzed in detail. TPO, XRD, SEM and Raman analyses show that increasing Ni content contributes to the production of CNTs with good morphology and high graphitization degree. While the increasing Fe content contributes to improving the yield of CNTs. The outer and inner diameters of the FeNi12-CNTs-800 are about 21 nm and 8 nm with the length of 18.9 μm, respectively. LDPE pyrolysis gases are analyzed to determine that the primary carbon source required for CNTs growth is C2H4. The C2H4 adsorption and decomposition processes on FeNi alloys are performed to reveal the growth mechanism of CNTs, based on density functional theory calculation. Three kinds of the growth models are proposed to explain the difference of the CNTs tubular shape. FeNi12-CNTs-800 are used to remove microplastics from wastewater due to existence of magnetic. PVC can be quickly removed from wastewater with removal of 100 % at 20 min. This study provides an effective way for recycling and treatment of waste plastic.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    常规的系统性癌症治疗通常会导致许多不良事件。然而,在实体肿瘤中发现过度表达的叶酸受体为靶向化疗铺平了道路.叶酸(FA),这些受体的配体,经常与化疗药物联合使用以提高其有效性。碳纳米管已成为提供这些叶酸共轭纳米系统的通用且有前途的方法,确保治疗剂靶向递送至癌细胞。当FA共轭纳米管解离时,它们在恶性细胞内释放装载药物的纳米管,减少脱靶效应。这些纳米管也可用于联合治疗,产生协同效应。这篇综述旨在全面收集和批判性地评估使用FA缀合的纳米载体提供治疗的最新方法。此外,它旨在增强我们对这种方法所涉及的相关化学和生化途径的理解。
    Conventional systemic cancer therapy often causes numerous adverse events. However, discovering overexpressed folate receptors in solid tumors has paved the way for targeted chemotherapy. Folic acid (FA), a ligand for these receptors, is frequently combined with chemotherapeutic drugs to improve their effectiveness. Carbon nanotubes have emerged as a versatile and promising method for delivering these folate-conjugated nano-systems, ensuring targeted delivery of therapeutic agents to cancerous cells. When FA-conjugated nanotubes dissociate, they release the drug-loaded nanotubes inside the malignant cells, reducing off-target effects. These nanotubes can also be used for combination therapies, producing synergistic effects. This review aims to comprehensively gather and critically evaluate the latest methods for delivering therapeutics using FA-conjugated nanovehicles. Additionally, it seeks to enhance our comprehension of the pertinent chemistry and biochemical pathways involved in this approach.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    提高正极材料的电化学性能,构造梯度纳米结构是一种有价值的方法。本研究成功地在碳纳米管(CNT)衬底上合成了氮掺杂石墨烯量子点(NGQD)修饰的(Ni0.5Co0.5)3V2O8,构建了高性能超级电容器的自支撑电极。通过溶液浸渍工艺将(Ni0.5Co0.5)3V2O8纳米片成功地包裹到CNT表面上,这增加了材料的比表面积和层间间距。此外,由于金属离子和众多氧化还原中心之间的协同相互作用,电极材料的电化学性能显着增强。NGQD的嵌入丰富了具有活性位点的材料,并进一步提高了其比容量,而不损害层配置的结构整体性。使用CNT作为基底确保了电极的自支撑性质。因此,(Ni0.5Co0.5)3V2O8/NGQD@CNT复合材料在1Ag-1时表现出3018.2Fg-1的超高比电容,在10Ag-1时表现出2332Fg-1的超高比电容。用(Ni0.5Co0.5)3V2O8/NGQD@CNT和活性炭(AC)构建的非对称超级电容器在800Wkg-1的功率密度下表现出令人印象深刻的160.2Whkg-1的能量密度。8000次充放电循环后,容量保持率为78.5%,库洛MBIC效率始终高于98%。
    To improve the electrochemical performance of positive electrode materials, constructing graded nanostructures is a worthwhile approach. This study successfully synthesized nitrogen-doped graphene quantum dots (NGQD) modified (Ni0.5Co0.5)3V2O8 on a carbon nanotube (CNT) substrate to construct self-supporting electrodes for high-performance supercapacitors. The (Ni0.5Co0.5)3V2O8 nanosheets were successfully wrapped onto the CNT surface through a solution impregnation process, which increased the specific surface area and interlayer spacing of the material. Furthermore, the electrochemical properties of the electrode material underwent significant enhancement due to the synergistic interplay between metal ions and the numerous redox centers. The embedding of the NGQD enriched the materials with active sites and further improved its specific capacity without compromising the structure intergrity of the layer configuration. Using CNT as the substrate ensured the self-supporting nature of the electrode. Consequently, the (Ni0.5Co0.5)3V2O8/NGQD@CNT composite exhibits an ultra-high specific capacitance of 3018.2 F g-1 at 1 A g-1 and 2332 F g-1 at 10 A g-1. The asymmetric supercapacitor constructed with (Ni0.5Co0.5)3V2O8/NGQD@CNT and activated carbon (AC) presented an impressive energy density of 160.2 Wh kg-1 at a power density of 800 W kg-1. After 8000 charge-discharge cycles, the capacity retention rate was 78.5 %, with a Coulo mbic efficiency consistently above 98 %.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    环氧树脂(EP)的阻燃性和导热性能的优化,用于关键应用,如机械部件和电子封装,是一个重大挑战。这项研究介绍了一部小说,超声辅助自组装技术,以创建由碳纳米管和聚磷酸铵(CNT@APP)组成的双功能填料。这种方法,利用动态配体相互作用和战略溶剂选择,允许精确控制碳纳米管在APP表面上的组装和分布,将其与传统的混合方法区分开来。7.5重量的积分。%CNTs@APP10加入EP纳米复合材料可显著提高阻燃性,极限氧指数(LOI)值为31.8%,并达到UL-94V-0等级。此外,关键火灾危险指标,包括总放热(THR),总烟雾释放量(TSR),和CO产量(PCOY)的峰强度,大幅减少45.9%至77.5%。这种方法还导致了显著的3.6倍提高的焦炭产量,展示了其在传统混合技术上改变游戏规则的潜力。此外,尽管添加了最少的碳纳米管,热导率显著增强,增加了53%。这项研究为多功能EP纳米复合材料的开发提供了一种新的方法,提供广泛的应用潜力。
    The optimization of flame retardancy and thermal conductivity in epoxy resin (EP), utilized in critical applications such as mechanical components and electronics packaging, is a significant challenge. This study introduces a novel, ultrasound-assisted self-assembly technique to create a dual-functional filler consisting of carbon nanotubes and ammonium polyphosphate (CNTs@APP). This method, leveraging dynamic ligand interactions and strategic solvent selection, allows for precise control over the assembly and distribution of CNTs on APP surfaces, distinguishing it from conventional blending approaches. The integration of 7.5 wt.% CNTs@APP10 into EP nanocomposites results in substantial improvements in flame retardancy, as evidenced by a limiting oxygen index (LOI) value of 31.8% and achievement of the UL-94 V-0 rating. Additionally, critical fire hazard indicators, including total heat release (THR), total smoke release (TSR), and the peak intensity of CO yield (PCOY), are significantly reduced by 45.9% to 77.5%. This method also leads to a remarkable 3.6-fold increase in char yield, demonstrating its game-changing potential over traditional blending techniques. Moreover, despite minimal CNTs addition, thermal conductivity is notably enhanced, showing a 53% increase. This study introduces a novel approach in the development of multifunctional EP nanocomposites, offering potential for wide range of applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电子设备的尺寸不断缩小,同时性能不断提高,使多余的散热具有挑战性。传统的热界面材料(TIM),如热脂和垫面临的限制,在导热性和稳定性,特别是当设备按比例缩小时。碳纳米管(CNT)由于其优异的导热性和机械性能而成为有希望的TIM候选物。然而,当CNT膜集成到器件中时,由于缺陷和捆扎效应,其热导率降低。本研究采用了一种新颖的横截面方法,将高真空扫描热显微镜(SThM)与光束出口横截面抛光(BEXP)相结合,以研究在低温和室温下垂直排列的CNT束的纳米级形态和热性能。使用适当的热传输模型,我们提取了垂直排列纳米管的有效热导率,并在200K下获得了4Wm-1K-1,在300K下获得了37Wm-1K-1。此外,CNT束之间不可忽视的横向热传导表明这些结构中更复杂的传热机制。这些发现为碳纳米管束中的纳米级热传输提供了独特的见解,这对于优化新的热管理策略至关重要。
    Electronic devices continue to shrink in size while increasing in performance, making excess heat dissipation challenging. Traditional thermal interface materials (TIMs) such as thermal grease and pads face limitations in thermal conductivity and stability, particularly as devices scale down. Carbon nanotubes (CNTs) have emerged as promising candidates for TIMs because of their exceptional thermal conductivity and mechanical properties. However, the thermal conductivity of CNT films decreases when integrated into devices due to defects and bundling effects. This study employs a novel cross-sectional approach combining high-vacuum scanning thermal microscopy (SThM) with beam-exit cross-sectional polishing (BEXP) to investigate the nanoscale morphology and thermal properties of vertically aligned CNT bundles at low and room temperatures. Using appropriate thermal transport models, we extracted effective thermal conductivities of the vertically aligned nanotubes and obtained 4 W m-1 K-1 at 200 K and 37 W m-1 K-1 at 300 K. Additionally, non-negligible lateral thermal conductance between CNT bundles suggests more complex heat transfer mechanisms in these structures. These findings provide unique insights into nanoscale thermal transport in CNT bundles, which is crucial for optimizing novel thermal management strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    水分解技术可以将太阳能和风能等可再生能源转化为氢能,这是实现低碳氢经济循环的关键。然而,用于析氢反应(HER)的Pt基催化剂过于昂贵,因此需要开发高效的非贵金属催化剂作为替代品。在这里,Ni-BDC负载的碳布(CC)与尿素共热解,以获得碳纳米管(CNT)和在CC上嵌入W掺杂的Ni纳米颗粒的多孔碳(PC)的复合结构,产生NiW-CNT/PC/CC。受益于Ni和W之间的协同效应,CNT的高导电性,和PC的高传质速率,NiW-CNT/PC/CC在KOH中表现出优异的HER活性,只需要45mV的低过电位来驱动10mAcm-2的电流密度,稳定性超过40h。模拟计算证实,在金属Ni中掺杂W可以通过降低d带中心和削弱氢吸附来优化其电子结构,从而减少她的障碍。
    Water splitting technology can convert renewable energies such as solar and wind into hydrogen energy, which is key to achieving a low-carbon hydrogen economy cycle. However, Pt-based catalysts for hydrogen evolution reaction (HER) are too expensive, thus it needs to develop efficient non-noble metal catalysts as alternatives. Herein, Ni-BDC-loaded carbon cloth (CC) is co-pyrolyzed with urea to obtain a composite structure of carbon nanotubes (CNT) and porous carbon (PC) embedded with W-doped Ni nanoparticles on CC, resulting in NiW-CNT/PC/CC. Benefiting from the synergistic effect between Ni and W, the high conductivity of CNT, and the high mass transfer rate of PC, NiW-CNT/PC/CC exhibits excellent HER activity in KOH, which only requires a low overpotential of 45 mV to drive a current density of 10 mA cm-2 with stability exceeding 40 h. Simulation calculations confirm that the W doping in metal Ni can optimize its electronic structure by lowering the d-band center and weakening hydrogen adsorption, thus reducing its HER barrier.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    能够实时准确评估氧气(O2)浓度的传感器对于涵盖个人健康监测的各种应用至关重要。环境保护,和工业过程开发。这里描述了一种高性能的化学电阻传感器,该传感器允许在室温下在可见光照射下快速检测O2。受染料敏化太阳能电池工作原理的启发,化学电阻器基于单壁碳纳米管-二氧化钛杂化(SWCNT-TiO2),带有分子Re基光敏剂[(Pbpy)(CO)3ReBr](Pbpy=4,4'-[P(O)(OH)2]2-2,2'-联吡啶)。所得的SWCNT-TiO2-Re复合材料经历光诱导的电荷转移,其对O2的ppb水平敏感,从而产生快速且可逆的化学抗性响应。由于其独特的操作模式和强大的组件,传感器在一系列干扰物上对O2表现出高度的选择性,耐湿性,和多个月的台式稳定性。本文提出的方法证明了光捕获概念对健壮发展的可译性,快速,和低功耗传感技术。
    Sensors that can accurately assess oxygen (O2) concentrations in real time are crucial for a wide range of applications spanning personal health monitoring, environmental protection, and industrial process development. Here a high-performance chemiresistive sensor that allows for the rapid detection of O2 at room temperature under visible light illumination is described. Inspired by the operating principles of dye-sensitized solar cells, the chemiresistor is based on a single-walled carbon nanotube-titania hybrid (SWCNT-TiO2) bearing a molecular Re-based photosensitizer [(Pbpy)(CO)3ReBr] (Pbpy = 4,4\'-[P(O)(OH)2]2-2,2\'-bipyridine). The resulting SWCNT-TiO2-Re composite undergoes photoinduced charge transfer that is sensitive to ppb levels of O2, thereby yielding a rapid and reversible chemiresistive response. Owing to its unique mode of operation and robust components, the sensor shows a high degree of selectivity for O2 over a range of interferants, humidity tolerance, and multimonth benchtop stability. The approach presented herein demonstrates the translatability of concepts in light harvesting to the development of robust, rapid, and low-power sensing technologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号