Cancer cell treatment

  • 文章类型: Journal Article
    前所未有的微/纳米尺度导航能力和量身定制的功能调整微/纳米马达作为新的目标药物递送系统,为生物医学应用开辟了新的视野。在这里,我们设计了一种光驱动的rGO/Cu2+1O管状纳米马达,用于主动靶向癌细胞作为药物递送系统。在真实细胞培养基(5%葡萄糖细胞等渗溶液)中,推进性能大大提高,归因于引入氧空位和还原的氧化石墨烯(rGO)层,用于分离光诱导的电子-空穴对。可以容易地调节运动速度和方向。同时,由于π-π键效应,多柔比星(DOX)可以快速加载到rGO层上。微型机器人中的Cu2+1O基质不仅可以作为光催化剂产生化学浓度梯度作为驱动力,还可以作为纳米药物杀死癌细胞。光驱动rGO/Cu2+1O纳米马达的强大推进力加上微小的尺寸赋予了它们主动的跨膜运输,协助DOX和Cu2+1O突破细胞膜屏障。与无动力纳米载体和游离DOX相比,光推进rGO/Cu2+1O纳米马达表现出更高的跨膜转运效率和显著的治疗功效。这种概念验证的纳米马达设计提出了一种针对肿瘤的创新方法,将光驱动微/纳米马达的生物医学应用范围扩大到浅表组织治疗。
    The unprecedented navigation ability in micro/nanoscale and tailored functionality tunes micro/nanomotors as new target drug delivery systems, open up new horizons for biomedical applications. Herein, we designed a light-driven rGO/Cu2 + 1O tubular nanomotor for active targeting of cancer cells as a drug delivery system. The propulsion performance is greatly enhanced in real cell media (5% glucose cells isotonic solution), attributing to the introduction of oxygen vacancy and reduced graphene oxide (rGO) layer for separating photo-induced electron-hole pairs. The motion speed and direction can be readily modulated. Meanwhile, doxorubicin (DOX) can be loaded quickly on the rGO layer because of π-π bonding effect. The Cu2 + 1O matrix in the tiny robots not only serves as a photocatalyst to generate a chemical concentration gradient as the driving force but also acts as a nanomedicine to kill cancer cells as well. The strong propulsion of light-driven rGO/Cu2 + 1O nanomotors coupled with tiny size endow them with active transmembrane transport, assisting DOX and Cu2 + 1O breaking through the barrier of the cell membrane. Compared with non-powered nanocarrier and free DOX, light-propelled rGO/Cu2 + 1O nanomotors exhibit greater transmembrane transport efficiency and significant therapeutic efficacy. This proof-of-concept nanomotor design presents an innovative approach against tumor, enlarging the list of biomedical applications of light-driven micro/nanomotors to the superficial tissue treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    必须全面了解纳米材料(NMs)的物理和化学性质,才能有效地设计它们以进行规范使用。虽然NMs被用于治疗,它们的细胞毒性引起了极大的关注。纳米尺度定量结构-性质关系(nano-QSPR)模型可以帮助理解NMs与生物环境之间的关系,并为NMs的结构特性和生物毒性作用建模提供新的方法。该研究的目标是构建完全验证的基于属性的模型,以提取相关特征来估计和影响zeta电位,并获得有关癌细胞治疗中细胞损伤的毒性曲线。为了实现这一点,首先使用18种金属氧化物(MeOx)NM进行QSPR建模,以使用基于周期表的描述符测量其材料特性。获得的特征随后被应用于缺乏此类信息的MeOxNM的zeta电位计算(对稀疏数据的填补)。为了进一步阐明zeta电位对细胞损伤的影响,使用132MeOxNMs开发了QSPR模型,以了解细胞损伤的可能机制。结果表明,Zeta电位,以及其他七个描述符,有可能通过自由基积累影响氧化损伤,这可能导致癌细胞存活率的变化。开发的QSPR和定量结构-活性关系模型还提供了有关MeOxNM的更安全设计和毒性评估的提示。
    A comprehensive knowledge of the physical and chemical properties of nanomaterials (NMs) is necessary to design them effectively for regulated use. Although NMs are utilized in therapeutics, their cytotoxicity has attracted great attention. Nanoscale quantitative structure-property relationship (nano-QSPR) models can help in understanding the relationship between NMs and the biological environment and provide new ways for modeling the structural properties and bio-toxic effects of NMs. The goal of the study is to construct fully validated property-based models to extract relevant features for estimating and influencing the zeta potential and obtaining the toxicity profile regarding cell damage in the treatment of cancer cells. To achieve this, QSPR modeling was first performed with 18 metal oxide (MeOx) NMs to measure their materials properties using periodic table-based descriptors. The features obtained were later applied for zeta potential calculation (imputation for sparse data) for MeOx NMs that lack such information. To further clarify the influence of the zeta potential on cell damage, a QSPR model was developed with 132 MeOx NMs to understand the possible mechanisms of cell damage. The results showed that zeta potential, along with seven other descriptors, had the potential to influence oxidative damage through free radical accumulation, which could lead to changes in the survival rate of cancerous cells. The developed QSPR and quantitative structure-activity relationship models also give hints regarding safer design and toxicity assessment of MeOx NMs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    One of the most challenging frontiers in biological systems understanding is fluorescent label-free imaging. We present here the NeuriTES platform that revisits the standard paradigms of video analysis to detect unlabeled objects and adapt to the dynamic evolution of the phenomenon under observation. Object segmentation is reformulated using robust algorithms to assure regular cell detection and transfer entropy measures are used to study the inter-relationship among the parameters related to the evolving system. We applied the NeuriTES platform to the automatic analysis of neurites degeneration in presence of amyotrophic lateral sclerosis (ALS) and to the study of the effects of a chemotherapy drug on living prostate cancer cells (PC3) cultures. Control cells have been considered in both the two cases study. Accuracy values of 93% and of 92% are achieved, respectively. NeuriTES not only represents a tool for investigation in fluorescent label-free images but demonstrates to be adaptable to individual needs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号