Cancer cell fitness

  • 文章类型: Journal Article
    染色体不稳定(CIN),有丝分裂期间染色体分离错误的发生率增加,是癌细胞的标志.CIN导致细胞之间的核型差异,从而导致单个癌细胞之间的大规模异质性;因此,它在癌症进化中起着重要作用。研究CIN及其后果在技术上具有挑战性,但是已经开发了各种技术来跟踪肿瘤发生过程中的核型动态,追踪克隆谱系,并以单细胞分辨率将基因组变化与癌症表型联系起来。这些方法不仅为CIN在癌症进展中的作用提供了有价值的见解,而且还涉及癌细胞的适应性。在这篇细胞科学概览文章和随附的海报中,我们讨论了CIN之间的关系,癌细胞适应性和进化,并强调可用于研究这些因素之间关系的技术。为此,我们探索评估癌细胞适应性的方法,特别是染色体不稳定的癌症。
    Chromosomal instability (CIN), an increased rate of chromosome segregation errors during mitosis, is a hallmark of cancer cells. CIN leads to karyotype differences between cells and thus large-scale heterogeneity among individual cancer cells; therefore, it plays an important role in cancer evolution. Studying CIN and its consequences is technically challenging, but various technologies have been developed to track karyotype dynamics during tumorigenesis, trace clonal lineages and link genomic changes to cancer phenotypes at single-cell resolution. These methods provide valuable insight not only into the role of CIN in cancer progression, but also into cancer cell fitness. In this Cell Science at a Glance article and the accompanying poster, we discuss the relationship between CIN, cancer cell fitness and evolution, and highlight techniques that can be used to study the relationship between these factors. To that end, we explore methods of assessing cancer cell fitness, particularly for chromosomally unstable cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们通过理论模型确定了关键的保守和突变基因,该模型将基因的适合度贡献与其在临床队列中观察到的突变频率联系起来。“乘客”基因突变不会改变适应性,并且其突变频率由基因大小和突变率决定。驱动突变,增加健身(和增殖),比预期更频繁地观察到。必需基因中的非同义突变会降低适应性,并被自然选择消除,导致患病率低于预期。我们将这种“进化分类”原理应用于来自EGFR突变体的TCGA数据,KRAS-突变体,和NEK(非EGFR/KRAS)肺腺癌。我们发现亚型之间进化选择的非同义基因突变频繁重叠,这表明可以适应常见的局部组织选择力。LUAD亚型中保守基因的重叠很少,这表明负进化选择在致癌过程中强烈依赖于起始突变事件。高度表达的基因更可能是保守的,并且表达的显着变化(增加/减少20%)在具有进化选择的突变的基因中很常见,但在保守基因中却不常见。EGFR-mut癌症的平均突变(89)比KRAS-mut(228)和NEK(313)少。在保守和突变基因中的亚型特异性变异鉴定了细胞信号传导中的关键分子组分,细胞外基质重塑,和膜转运蛋白。这些发现证明了定义驱动突变和体细胞保守基因之间的共适应的亚型特异性模式,以及对表观遗传和遗传对癌症进化的贡献的新见解。
    We identify critical conserved and mutated genes through a theoretical model linking a gene’s fitness contribution to its observed mutational frequency in a clinical cohort. “Passenger” gene mutations do not alter fitness and have mutational frequencies determined by gene size and the mutation rate. Driver mutations, which increase fitness (and proliferation), are observed more frequently than expected. Non-synonymous mutations in essential genes reduce fitness and are eliminated by natural selection resulting in lower prevalence than expected. We apply this “evolutionary triage” principle to TCGA data from EGFR-mutant, KRAS-mutant, and NEK (non-EGFR/KRAS) lung adenocarcinomas. We find frequent overlap of evolutionarily selected non-synonymous gene mutations among the subtypes suggesting enrichment for adaptations to common local tissue selection forces. Overlap of conserved genes in the LUAD subtypes is rare suggesting negative evolutionary selection is strongly dependent on initiating mutational events during carcinogenesis. Highly expressed genes are more likely to be conserved and significant changes in expression (>20% increased/decreased) are common in genes with evolutionarily selected mutations but not in conserved genes. EGFR-mut cancers have fewer average mutations (89) than KRAS-mut (228) and NEK (313). Subtype-specific variation in conserved and mutated genes identify critical molecular components in cell signaling, extracellular matrix remodeling, and membrane transporters. These findings demonstrate subtype-specific patterns of co-adaptations between the defining driver mutation and somatically conserved genes as well as novel insights into epigenetic versus genetic contributions to cancer evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号