CP: Plants

CP: 植物
  • 文章类型: Journal Article
    选择具有增强的健康益处和优越的风味的水果是桃育种的重要方面。了解外观和风味化学物质之间的遗传相互作用仍然是一个主要挑战。我们确定了影响消费者对桃子偏好的最重要的挥发物,从而确定提高风味质量的优先事项。我们量化了由184个种质组成的桃子种群的挥发物,并证明了红肉种质中重要的风味挥发物芳樟醇和Z-3-己烯乙酸酯的主要减少。我们确定了474个功能性基因调控网络(GRNs),其中GRN05通过NAM/ATAF1/2/CUC(NAC)转录因子PpBL在控制红肉和挥发物含量方面起着至关重要的作用。过表达PpBL导致PpNAC1的表达降低,PpNAC1是乙酸Z-3-己烯基酯和芳樟醇合成的正调节剂。此外,我们确定了三种串联PpAAT的单倍型,它们与基因表达和酯含量降低显著相关。我们开发遗传资源以改善果实品质。
    Selection of fruits with enhanced health benefits and superior flavor is an important aspect of peach breeding. Understanding the genetic interplay between appearance and flavor chemicals remains a major challenge. We identify the most important volatiles contributing to consumer preferences for peach, thus establishing priorities for improving flavor quality. We quantify volatiles of a peach population consisting of 184 accessions and demonstrate major reductions in the important flavor volatiles linalool and Z-3-hexenyl acetate in red-fleshed accessions. We identify 474 functional gene regulatory networks (GRNs), among which GRN05 plays a crucial role in controlling both red flesh and volatile content through the NAM/ATAF1/2/CUC (NAC) transcription factor PpBL. Overexpressing PpBL results in reduced expression of PpNAC1, a positive regulator for Z-3-hexenyl acetate and linalool synthesis. Additionally, we identify haplotypes for three tandem PpAATs that are significantly correlated with reduced gene expression and ester content. We develop genetic resources for improvement of fruit quality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    全基因组复制(WGD)发生在所有王国,并影响物种形成,驯化,和癌症的结果。然而,双倍的DNA管理对于新生多倍体可能是具有挑战性的。物种内多倍体(自多倍体)的研究允许将重点放在DNA管理方面,将其与杂交的混杂效应(在异源多倍体杂种中)分离。自体多倍体是如何耐受的,年轻的多倍体是如何稳定的?这里,我们引入了一个强大的模型来解决这个问题:耳蜗属,经历了许多多倍体化事件。我们评估减数分裂和其他多倍体相关表型,产生一个染色体尺度的基因组,并对来自33倍性对比种群的113个个体进行测序。我们在动子组件和离子转运蛋白处检测到明显的与多倍体相关的选择信号。对选定的等位基因进行建模,我们详细说明了动粒复合物介导多倍体适应的证据。我们比较了相隔4000万年的三个属的独立自身多倍体中的候选者,突出了过程和基因水平的共同功能,表明响应多倍体的进化灵活性。
    Whole-genome duplication (WGD) occurs in all kingdoms and impacts speciation, domestication, and cancer outcome. However, doubled DNA management can be challenging for nascent polyploids. The study of within-species polyploidy (autopolyploidy) permits focus on this DNA management aspect, decoupling it from the confounding effects of hybridization (in allopolyploid hybrids). How is autopolyploidy tolerated, and how do young polyploids stabilize? Here, we introduce a powerful model to address this: the genus Cochlearia, which has experienced many polyploidization events. We assess meiosis and other polyploid-relevant phenotypes, generate a chromosome-scale genome, and sequence 113 individuals from 33 ploidy-contrasting populations. We detect an obvious autopolyploidy-associated selection signal at kinetochore components and ion transporters. Modeling the selected alleles, we detail evidence of the kinetochore complex mediating adaptation to polyploidy. We compare candidates in independent autopolyploids across three genera separated by 40 million years, highlighting a common function at the process and gene levels, indicating evolutionary flexibility in response to polyploidy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由真菌病原体引起的植物病害对作物生产构成了巨大的威胁。真菌的分生孢子对疾病流行至关重要,并且是有前途的药物靶标。这里,我们表明FolTFIIS转录延伸因子的脱乙酰化对于尖孢镰刀菌f.sp.lycopersici(Fol)分生孢子。在微孢子合时,Fol通过改变控制酶的水平来降低FolTFIIS的K76乙酰化,通过FolIws1允许其核易位。增加核FolTFIIS增强孢子形成相关基因的转录,因此,实现微分生孢子的生产。FolTFIIS的脱乙酰化对于大分生孢子和衣原体孢子的生产也至关重要,其同系物在灰葡萄孢中具有相似的功能。我们确定了两种针对FolIws1的化学物质,它们可以阻断Fol的分生孢子,并对多种病原真菌具有有效的活性,而不会对宿主造成伤害。这些发现揭示了分生孢子调节的保守机制,并为疾病管理提供了候选农用化学品。
    Plant diseases caused by fungal pathogens pose a great threat to crop production. Conidiation of fungi is critical for disease epidemics and serves as a promising drug target. Here, we show that deacetylation of the FolTFIIS transcription elongation factor is indispensable for Fusarium oxysporum f. sp. lycopersici (Fol) conidiation. Upon microconidiation, Fol decreases K76 acetylation of FolTFIIS by altering the level of controlling enzymes, allowing for its nuclear translocation by FolIws1. Increased nuclear FolTFIIS enhances the transcription of sporulation-related genes and, consequently, enables microconidia production. Deacetylation of FolTFIIS is also critical for the production of macroconidia and chlamydospores, and its homolog has similar functions in Botrytis cinerea. We identify two FolIws1-targeting chemicals that block the conidiation of Fol and have effective activity against a wide range of pathogenic fungi without harm to the hosts. These findings reveal a conserved mechanism of conidiation regulation and provide candidate agrochemicals for disease management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    青枯雷尔氏菌物种复合物会导致各种作物的青枯病。番茄品种夏威夷7996是一种广泛使用的抗性资源;然而,抗性被毒株逃避,潜在的机制仍然未知。这里,我们报道了Ⅱ型菌株ES5-1可以克服夏威夷7996抗性。RipV2,一种特异于Ⅱ型菌株的Ⅲ型效应子,对克服番茄抗性至关重要。RipV2编码E3泛素连接酶,抑制免疫应答和Toll/白介素-1受体/抗性核苷酸结合/富含亮氨酸重复序列(NLR)(TNL)介导的细胞死亡。番茄辅助NLRN需求基因1(NRG1),增强疾病易感性1(EDS1),和衰老相关基因101b(SAG101b)被鉴定为RipV2靶蛋白。RipV2对夏威夷7996的ES5-1毒力至关重要,但在SlNRG1沉默的番茄中却没有,证明SlNRG1是RipV2毒力靶标。我们的结果剖析了RipV2破坏免疫力的机制,并强调了融合的免疫成分在赋予细菌枯萎病抗性中的重要性。
    The Ralstonia solanacearum species complex causes bacterial wilt in a variety of crops. Tomato cultivar Hawaii 7996 is a widely used resistance resource; however, the resistance is evaded by virulent strains, with the underlying mechanisms still unknown. Here, we report that the phylotype Ⅱ strain ES5-1 can overcome Hawaii 7996 resistance. RipV2, a type Ⅲ effector specific to phylotype Ⅱ strains, is vital in overcoming tomato resistance. RipV2, which encodes an E3 ubiquitin ligase, suppresses immune responses and Toll/interleukin-1 receptor/resistance nucleotide-binding/leucine-rich repeat (NLR) (TNL)-mediated cell death. Tomato helper NLR N requirement gene 1 (NRG1), enhanced disease susceptibility 1 (EDS1), and senescence-associated gene 101b (SAG101b) are identified as RipV2 target proteins. RipV2 is essential for ES5-1 virulence in Hawaii 7996 but not in SlNRG1-silenced tomato, demonstrating SlNRG1 to be an RipV2 virulence target. Our results dissect the mechanisms of RipV2 in disrupting immunity and highlight the importance of converged immune components in conferring bacterial wilt resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    N6-甲基腺苷(m6A)mRNA修饰的动力学受到m6A甲基转移酶复合物和去甲基酶的严格控制。这里,我们发现生长素处理改变了对生长素响应基因的m6A修饰。机械上,跨膜激酶4(TMK4),生长素信号通路的一个组成部分,与FKBP12-相互作用蛋白37(FIP37)相互作用并磷酸化,m6A甲基转移酶复合物的核心成分,以生长素依赖的方式。FIP37的磷酸化增强了其与RNA的相互作用,从而增加其靶基因的m6A修饰,例如硝酶1(NIT1),参与吲哚-3-乙酸(IAA)生物合成的基因。1-萘乙酸(NAA)处理以TMK4-和FIP37依赖性方式加速NIT1的mRNA衰减,这导致生长素生物合成的抑制。我们的发现确定了生长素通过磷酸化FIP37调节m6A修饰的调节机制,最终影响植物中的mRNA稳定性和生长素生物合成。
    The dynamics of N6-methyladenosine (m6A) mRNA modification are tightly controlled by the m6A methyltransferase complex and demethylases. Here, we find that auxin treatment alters m6A modification on auxin-responsive genes. Mechanically, TRANSMEMBRANE KINASE 4 (TMK4), a component of the auxin signaling pathway, interacts with and phosphorylates FKBP12-INTERACTING PROTEIN 37 (FIP37), a core component of the m6A methyltransferase complex, in an auxin-dependent manner. Phosphorylation of FIP37 enhances its interaction with RNA, thereby increasing m6A modification on its target genes, such as NITRILASE 1 (NIT1), a gene involved in indole-3-acetic acid (IAA) biosynthesis. 1-Naphthalacetic acid (NAA) treatment accelerates the mRNA decay of NIT1, in a TMK4- and FIP37-dependent manner, which leads to inhibition of auxin biosynthesis. Our findings identify a regulatory mechanism by which auxin modulates m6A modification through the phosphorylation of FIP37, ultimately affecting mRNA stability and auxin biosynthesis in plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    从二维(2D)到3D生长的过渡可能会促进植物在土地上定居。但是它的异质性还没有得到很好的理解。在这项研究中,我们利用单细胞RNA测序来分析苔藓,其形态发生涉及从2D到3D生长的过渡。我们分析了超过17,000个单细胞,覆盖了所有主要的营养组织,包括2D细丝(绿藻和caulonema)和3D结构(芽和配子体)。假时间分析显示,有更多的候选基因决定了2D尖端伸长或3D芽分化的细胞命运。使用加权基因共表达网络分析,我们确定了一个连接β型碳酸酐酶(βCAs)与生长素的模块。我们进一步验证了βCAs的细胞表达模式,并证明了它们在3D配子体发育中的作用。总的来说,我们的研究提供了对苔藓中细胞异质性的见解,并确定了支持单细胞分辨率下2D到3D生长转变的分子特征。
    The transition from two-dimensional (2D) to 3D growth likely facilitated plants to colonize land, but its heterogeneity is not well understood. In this study, we utilized single-cell RNA sequencing to analyze the moss Physcomitrium patens, whose morphogenesis involves a transition from 2D to 3D growth. We profiled over 17,000 single cells covering all major vegetative tissues, including 2D filaments (chloronema and caulonema) and 3D structures (bud and gametophore). Pseudotime analyses revealed larger numbers of candidate genes that determine cell fates for 2D tip elongation or 3D bud differentiation. Using weighted gene co-expression network analysis, we identified a module that connects β-type carbonic anhydrases (βCAs) with auxin. We further validated the cellular expression patterns of βCAs and demonstrated their roles in 3D gametophore development. Overall, our study provides insights into cellular heterogeneity in a moss and identifies molecular signatures that underpin the 2D-to-3D growth transition at single-cell resolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    损伤是植物中的一般胁迫,其由各种害虫和病原感染以及环境诱导的机械损伤引起。植物有复杂的分子机制来识别和应对伤害,单子叶植物与双子叶植物不同。这里,我们展示了两个不同类别的时间分离的参与,内源性衍生肽,即,植物诱导肽(PEPs)和植物因子(PSK),介导水稻中的伤口反应。这些肽触发动态信号中继,其中参与PSK感知的受体激酶OsPSKR起着主要作用。水稻中OsPSKR表达的扰动导致发育受损和组成型自身免疫表型。OsPSKR调节受伤时防御向生长信号的过渡。OsPSKR显示与参与PEP感知的OsPEPR1受体的相互拮抗作用。总的来说,我们的工作表明存在逐步肽介导的信号中继,该信号中继调节单子叶植物受伤时从防御到生长的过渡。
    Wounding is a general stress in plants that results from various pest and pathogenic infections in addition to environment-induced mechanical damages. Plants have sophisticated molecular mechanisms to recognize and respond to wounding, with those of monocots being distinct from dicots. Here, we show the involvement of two distinct categories of temporally separated, endogenously derived peptides, namely, plant elicitor peptides (PEPs) and phytosulfokine (PSK), mediating wound responses in rice. These peptides trigger a dynamic signal relay in which a receptor kinase involved in PSK perception named OsPSKR plays a major role. Perturbation of OsPSKR expression in rice leads to compromised development and constitutive autoimmune phenotypes. OsPSKR regulates the transitioning of defense to growth signals upon wounding. OsPSKR displays mutual antagonism with the OsPEPR1 receptor involved in PEP perception. Collectively, our work indicates the presence of a stepwise peptide-mediated signal relay that regulates the transition from defense to growth upon wounding in monocots.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    新特征的出现通常是在增强阶段之前,当产生性状所需的所有遗传成分被组装时。然而,阐明这些增强因素是具有挑战性的。我们以前已经表明,花青素激活R2R3-MYB,Stripy,在猴花马鞭草中引发了明显的叶面色素沉着模式的出现。这里,使用正向和反向遗传学方法,我们确定了三个激活STRIPY表达的增强因子:MvHY5,一种激活STRIPY并在整个叶片中表达的光信号传导的主要调节因子,和两个叶片发育调节剂,MvALOG1和MvTCP5,沿叶片近端轴以相反的梯度表达,并负向调节STRIPY。这些结果提供了强有力的经验证据,表明可以通过整合到先前存在的遗传调控网络中来增强表型新颖性,并强调了位置信息在图案化新型叶面条纹中的重要性。
    The emergence of novel traits is often preceded by a potentiation phase, when all the genetic components necessary for producing the trait are assembled. However, elucidating these potentiating factors is challenging. We have previously shown that an anthocyanin-activating R2R3-MYB, STRIPY, triggers the emergence of a distinct foliar pigmentation pattern in the monkeyflower Mimulus verbenaceus. Here, using forward and reverse genetics approaches, we identify three potentiating factors that pattern STRIPY expression: MvHY5, a master regulator of light signaling that activates STRIPY and is expressed throughout the leaf, and two leaf developmental regulators, MvALOG1 and MvTCP5, that are expressed in opposing gradients along the leaf proximodistal axis and negatively regulate STRIPY. These results provide strong empirical evidence that phenotypic novelties can be potentiated through incorporation into preexisting genetic regulatory networks and highlight the importance of positional information in patterning the novel foliar stripe.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    分生组织对器官形成至关重要,但是我们对它们分子进化的了解是有限的。这里,我们表明,APETALA2样转录因子家族的euANT分支中的AINTEGUMENTA(MpANT)对于非维管植物Marchantiapolypa的分生组织发育至关重要。MpANT在叶状体分生组织中表达。Mpant突变体显示出缺陷,以维持分生组织的身份并进行分生组织复制,而Mpant过度表达显示异位体生长。MpANT在GRAS家族的短根(SHR)分支中直接上调MpGRAS9。在维管植物拟南芥中,euANT分支基因PLETHORAs(AtPLTs)和AtANT参与根/茎尖分生组织和外侧器官原基的形成和维持,和AtPLTs直接靶向SHR分支基因。此外,euANTs通过相似的DNA结合基序与多形性分枝杆菌和拟南芥中许多保守的同源基因结合。总的来说,euANT途径在分生组织发育中具有进化上保守的作用。
    Meristems are crucial for organ formation, but our knowledge of their molecular evolution is limited. Here, we show that AINTEGUMENTA (MpANT) in the euANT branch of the APETALA2-like transcription factor family is essential for meristem development in the nonvascular plant Marchantia polymorpha. MpANT is expressed in the thallus meristem. Mpant mutants show defects to maintain meristem identity and undergo meristem duplication, while MpANT overexpressers show ectopic thallus growth. MpANT directly upregulates MpGRAS9 in the SHORT-ROOT (SHR) branch of the GRAS family. In the vascular plant Arabidopsis thaliana, the euANT-branch genes PLETHORAs (AtPLTs) and AtANT are involved in the formation and maintenance of root/shoot apical meristems and lateral organ primordia, and AtPLTs directly target SHR-branch genes. In addition, euANTs bind through a similar DNA-binding motif to many conserved homologous genes in M. polymorpha and A. thaliana. Overall, the euANT pathway has an evolutionarily conserved role in meristem development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    叶面色素沉着模式因植物种类和生长条件而异。在这项研究中,我们利用高光谱成像来评估营养胁迫下苔藓植物中的叶面色素沉着,并确定相关的遗传因素。使用奇异值分解(SVD)进行特征选择,我们定量由磷酸盐缺乏引起的颜色变化,硝酸盐,镁,钙,和铁。伪彩色thallus图像显示,破坏MpWRKY10会导致不规则的色素沉着,并伴有奥罗尼丁的积累。转录组分析显示MpWRKY10在磷酸盐缺乏过程中调节苯丙素途径酶和R2R3-MYB转录因子,在色素积累之前MpMYB14上调。MpWRKY10在老年人中下调,缺乏磷酸盐但在年轻的thalli中维持的色素thalli,它抑制色素沉着基因。由于衰老,色素沉着的thalli中没有这种下调。比较转录组分析表明,在红叶莴苣中,WRKY和MYB在营养响应和色素沉着中的作用相似,暗示在营养缺乏下控制叶面色素沉着模式的保守遗传因素。
    Foliar pigmentation patterns vary among plant species and growth conditions. In this study, we utilize hyperspectral imaging to assess foliar pigmentation in the bryophyte Marchantia polymorpha under nutrient stress and identify associated genetic factors. Using singular value decomposition (SVD) for feature selection, we quantitate color variations induced by deficiencies in phosphate, nitrate, magnesium, calcium, and iron. Pseudo-colored thallus images show that disrupting MpWRKY10 causes irregular pigmentation with auronidin accumulation. Transcriptomic profiling shows that MpWRKY10 regulates phenylpropanoid pathway enzymes and R2R3-MYB transcription factors during phosphate deficiency, with MpMYB14 upregulation preceding pigment accumulation. MpWRKY10 is downregulated in older, pigmented thalli under phosphate deficiency but maintained in young thalli, where it suppresses pigmentation genes. This downregulation is absent in pigmented thalli due to aging. Comparative transcriptome analysis suggests similar WRKY and MYB roles in nutrient response and pigmentation in red-leaf lettuce, alluding to conserved genetic factors controlling foliar pigmentation patterns under nutrient deficiency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号