COOLAIR

COOLAIR
  • 文章类型: Journal Article
    共转录调控之间的相互联系,染色质环境,和转录输出仍然知之甚少。这里,我们研究了RNA3'加工介导的拟南芥花斑C(FLC)的多梳沉默的潜在机制。我们显示了对数学促进因子1(APRF1)的要求,酵母Swd2和人WDR82的同源物,已知在转录终止期间调节RNA聚合酶II(RNAPolII)。APRF1与1型丝氨酸/苏氨酸蛋白磷酸酶4(TOPP4)(酵母Glc7/人PP1)和LUMINIDEPENDENS(LD)相互作用,后者显示Ref2/PNUTS中的结构特征,CPF3'末端加工机械的酵母和人磷酸酶模块的所有组件。已显示LD在体内与组蛋白H3K4去甲基酶开花位点D(FLD)共结合。这项工作显示了APRF1/LD介导的聚腺苷酸化/终止过程如何通过改变FLC的局部染色质环境来影响随后的转录轮次。
    The interconnections between co-transcriptional regulation, chromatin environment, and transcriptional output remain poorly understood. Here, we investigate the mechanism underlying RNA 3\' processing-mediated Polycomb silencing of Arabidopsis FLOWERING LOCUS C (FLC). We show a requirement for ANTHESIS PROMOTING FACTOR 1 (APRF1), a homolog of yeast Swd2 and human WDR82, known to regulate RNA polymerase II (RNA Pol II) during transcription termination. APRF1 interacts with TYPE ONE SERINE/THREONINE PROTEIN PHOSPHATASE 4 (TOPP4) (yeast Glc7/human PP1) and LUMINIDEPENDENS (LD), the latter showing structural features found in Ref2/PNUTS, all components of the yeast and human phosphatase module of the CPF 3\' end-processing machinery. LD has been shown to co-associate in vivo with the histone H3 K4 demethylase FLOWERING LOCUS D (FLD). This work shows how the APRF1/LD-mediated polyadenylation/termination process influences subsequent rounds of transcription by changing the local chromatin environment at FLC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    在寒冷天气期间,植物如何开始开花过程的完善模型可能需要重新审视。
    A well-established model for how plants start the process of flowering in periods of cold weather may need revisiting.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    To synchronize flowering time with spring, many plants undergo vernalization, a floral-promotion process triggered by exposure to long-term winter cold. In Arabidopsis thaliana, this is achieved through cold-mediated epigenetic silencing of the floral repressor, FLOWERING LOCUS C (FLC). COOLAIR, a cold-induced antisense RNA transcribed from the FLC locus, has been proposed to facilitate FLC silencing. Here, we show that C-repeat (CRT)/dehydration-responsive elements (DREs) at the 3\'-end of FLC and CRT/DRE-binding factors (CBFs) are required for cold-mediated expression of COOLAIR. CBFs bind to CRT/DREs at the 3\'-end of FLC, both in vitro and in vivo, and CBF levels increase gradually during vernalization. Cold-induced COOLAIR expression is severely impaired in cbfs mutants in which all CBF genes are knocked-out. Conversely, CBF-overexpressing plants show increased COOLAIR levels even at warm temperatures. We show that COOLAIR is induced by CBFs during early stages of vernalization but COOLAIR levels decrease in later phases as FLC chromatin transitions to an inactive state to which CBFs can no longer bind. We also demonstrate that cbfs and FLCΔCOOLAIR mutants exhibit a normal vernalization response despite their inability to activate COOLAIR expression during cold, revealing that COOLAIR is not required for the vernalization process.
    Long spells of cold winter weather may feel miserable, but they are often necessary for spring to blossom. Indeed, many plants need to face a prolonged period of low temperatures to be able to flower; this process is known as vernalization. While the molecular mechanisms which underpin vernalization are well-known, it is still unclear exactly how plants can ‘sense’ the difference between short and long periods of cold. Jeon, Jeong et al. set out to explore this question by focusing on COOLAIR, one of the rare genetic sequences identified as potentially being able to trigger vernalization. COOLAIR is a long noncoding RNA, a partial transcript of a gene that will not be ‘read’ by the cell to produce a protein but which instead regulates how and when certain genes are being switched on. COOLAIR emerges from the locus of the FLC gene, which is one of the main repressors of flowering, and it gradually accumulates in the plant when temperatures remain low for a long period. While some evidence suggests that COOLAIR may help to switch off FLC, other studies have raised some doubts about its involvement in vernalization. In response, Jeon, Jeong et al. examined the FLC gene in a range of plants closely related to A. thaliana, and in which COOLAIR also accumulates upon cold exposure. This helped them identify a class of proteins, known as CBFs, which could bind to sequences near the FLC gene to activate the production of COOLAIR when the plants were kept in cold conditions for a while. CBFs were already known to help plants adapt to short cold snaps, but these experiments confirmed that they could act as both short- and long-term cold sensors. This work allowed Jeon, Jeong et al. to propose a model in which CBF and therefore COOLAIR levels increase as the cold persists, until changes in the structure of the FLC gene prevent CBF from binding to it and COOLAIR production drops. Unexpectedly, examining the fate of mutants which could not produce COOLAIR revealed that these plants could still undergo vernalization, suggesting that the long noncoding RNA is in fact not necessary for this process. These results should prompt other scientists to further investigate the role of COOLAIR in vernalization; they also give insight into how coding and noncoding sequences may have evolved together in various members of the A. thaliana family to adapt to the environment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    FLOWERINGLOCUSC(FLC),MADS-box转录因子,在确定拟南芥的开花时间中起着重要作用。在这个基因与发育问题中,赵及其同事(pp.888-898)通过田间试验和实验室实验阐明了COOLAIR反义非编码RNA在FLC调节中的作用。COOLAIR介导的FLC沉默是由田间的第一次季节性霜冻引起的,因此在秋季冬季到来时充当关键分子指标。
    FLOWERING LOCUS C (FLC), a MADS-box transcription factor, plays a major role in determining flowering time in Arabidopsis In this issue of Genes & Development, Zhao and colleagues (pp. 888-898) elucidate the role of COOLAIR antisense noncoding RNAs in FLC regulation through field trials and laboratory experiments. COOLAIR-mediated FLC silencing is induced by the first seasonal frost in the field and thus acts as a key molecular indicator during autumn for winter arrival.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物监测其波动环境的许多方面,以帮助其发展与季节保持一致。对拟南芥春化的解剖产生了对嘈杂温度线索如何记录的分子理解,涉及花阻遏物基因座花斑C(FLC)的多相冷依赖性沉默。冷诱导的转录沉默先于低概率PRC2表观遗传转换机制。表观遗传转换需要没有温暖的温度以及长期的寒冷暴露。然而,较早的转录沉默阶段的自然温度输入不太清楚。这里,通过调查自然和气候不同的野外地点的拟南芥种质,我们表明,第一次季节性霜冻强烈诱导了COOLAIR的表达,在FLC室实验中,反义转录本在不同波动的情况下传递恒定的平均温度,表明COOLAIR的冷冻诱导与FLCmRNA的更强抑制相关。异位激活COOLAIR的突变体的鉴定揭示了COOLAIR上调如何能够直接降低FLC表达。与此一致,设计用于敲除COOLAIR的转基因扰乱了FLC沉默的早期阶段。然而,所有旨在去除COOLAIR的转基因均导致新型会聚FLC反义转录本的产生增加.我们的研究揭示了自然温度波动如何促进FLC的COOLAIR调节,第一次秋季霜冻是秋季/冬季到来的关键指标。
    Plants monitor many aspects of their fluctuating environments to help align their development with seasons. Molecular understanding of how noisy temperature cues are registered has emerged from dissection of vernalization in Arabidopsis, which involves a multiphase cold-dependent silencing of the floral repressor locus FLOWERING LOCUS C (FLC). Cold-induced transcriptional silencing precedes a low probability PRC2 epigenetic switching mechanism. The epigenetic switch requires the absence of warm temperatures as well as long-term cold exposure. However, the natural temperature inputs into the earlier transcriptional silencing phase are less well understood. Here, through investigation of Arabidopsis accessions in natural and climatically distinct field sites, we show that the first seasonal frost strongly induces expression of COOLAIR, the antisense transcripts at FLC Chamber experiments delivering a constant mean temperature with different fluctuations showed the freezing induction of COOLAIR correlates with stronger repression of FLC mRNA. Identification of a mutant that ectopically activates COOLAIR revealed how COOLAIR up-regulation can directly reduce FLC expression. Consistent with this, transgenes designed to knockout COOLAIR perturbed the early phase of FLC silencing. However, all transgenes designed to remove COOLAIR resulted in increased production of novel convergent FLC antisense transcripts. Our study reveals how natural temperature fluctuations promote COOLAIR regulation of FLC, with the first autumn frost acting as a key indicator of autumn/winter arrival.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Flowering is a critical stage of plant development and is closely correlated with seed production and crop yield. Flowering transition is regulated by complex genetic networks in response to endogenous and environmental signals. FLOWERING LOCUS C (FLC) is a central repressor in the flowering transition of Arabidopsis thaliana. The regulation of FLC expression is well studied at transcriptional and post-transcriptional levels. A subset of antisense transcripts from FLC locus, collectively termed cold-induced long antisense intragenic RNAs (COOLAIR), repress FLC expression under cold exposure. Recent studies have provided important insights into the alternative splicing of COOLAIR and FLC sense transcripts in response to developmental and environmental cues. Herein, at the 20th anniversary of FLC functional identification, we summarise new research advances in the alternative splicing of FLC sense and antisense transcripts that regulates flowering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Long noncoding RNAs play important roles in plant epigenetic processes. While many extensive studies have delineated the range of their functions in plants, few detailed studies of the structure of plant long noncoding RNAs have been performed. Here, we review genome-wide and system-specific structural studies and describe methodology for structure determination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Functional conservation of RNAs between different species is a key argument for their importance. While few long non-coding RNAs are conserved at the sequence level, many long non-coding RNAs have been identified that only share a position relative to other genes. It remains largely unknown whether and how these lncRNAs are conserved beyond their position. In Arabidopsis thaliana, the lncRNA COOLAIR is transcribed antisense from FLOWERING LOCUS C (FLC) in response to cold. Despite relatively low sequence similarity, the COOLAIR expression pattern and in vitro RNA secondary structure are highly conserved across the family Brassicaceae, which originated some 50 mya. It is unclear, however, whether COOLAIR functions in distantly related species such as monocots, which diverged some 150 mya. Here, we identified antisense lncRNAs from FLC homologs in various monocot species that share no sequence similarity with A. thaliana COOLAIR. Yet similar to COOLAIR, we found that BdODDSOC1 antisense (BdCOOLAIR1) and BdODDSOC2 antisense (BdCOOLAIR2) are induced by cold in a Brachypodium distachyon winter accession. Across B. distachyon accessions, the sequences of BdCOOLAIR1 and BdCOOLAIR2 are less conserved than exons but more conserved than flanking regions, suggesting a function for the transcript itself. Knock down of the BdODDSOC2 non-overlapping BdCOOLAIR2 transcript did not show a morphological phenotype, but did result in significantly higher BdODDSOC2 expression during cold, indicating that BdCOOLAIR2 performs a role in cis in the rate of BdODDSOC2 silencing. This functional similarity between eudicot and monocot species reveals ancient conservation or convergent evolution of FLC antisense transcription. Either scenario supports its functional importance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Single-cell quantification of transcription kinetics and variability promotes a mechanistic understanding of gene regulation. Here, using single-molecule RNA fluorescence in situ hybridization and mathematical modeling, we dissect cellular RNA dynamics for Arabidopsis FLOWERING LOCUS C (FLC). FLC expression quantitatively determines flowering time and is regulated by antisense (COOLAIR) transcription. In cells without observable COOLAIR expression, we quantify FLC transcription initiation, elongation, intron processing, and lariat degradation, as well as mRNA release from the locus and degradation. In these heterogeneously sized cells, FLC mRNA number increases linearly with cell size, resulting in a large cell-to-cell variability in transcript level. This variation is accounted for by cell-size-dependent, Poissonian FLC mRNA production, but not by large transcriptional bursts. In COOLAIR-expressing cells, however, antisense transcription increases with cell size and contributes to FLC transcription decreasing with cell size. Our analysis therefore reveals an unexpected role for antisense transcription in modulating the scaling of transcription with cell size.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    There is considerable debate about the functionality of long non-coding RNAs (lncRNAs). Lack of sequence conservation has been used to argue against functional relevance. We investigated antisense lncRNAs, called COOLAIR, at the A. thaliana FLC locus and experimentally determined their secondary structure. The major COOLAIR variants are highly structured, organized by exon. The distally polyadenylated transcript has a complex multi-domain structure, altered by a single non-coding SNP defining a functionally distinct A. thaliana FLC haplotype. The A. thaliana COOLAIR secondary structure was used to predict COOLAIR exons in evolutionarily divergent Brassicaceae species. These predictions were validated through chemical probing and cloning. Despite the relatively low nucleotide sequence identity, the structures, including multi-helix junctions, show remarkable evolutionary conservation. In a number of places, the structure is conserved through covariation of a non-contiguous DNA sequence. This structural conservation supports a functional role for COOLAIR transcripts rather than, or in addition to, antisense transcription.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号