CCCTC-Binding Factor

CCCTC - 结合因子
  • 文章类型: Journal Article
    谱系模糊的白血病包括几个松散定义的实体,往往没有明确的机械基础。这里,我们广泛分析了CpG岛甲基化表型的此类白血病的一个亚组的表观基因组和转录组。这些白血病表现出相当的混合髓样/淋巴样表观遗传景观,然而异质性遗传改变,这表明它们是由它们共同的表观遗传特征而不是常见的遗传病变定义的。基因表达富集揭示了与早期T细胞前体急性淋巴细胞白血病和淋巴祖细胞起源的相似性。与此相符,差异DNA甲基化和基因表达的整合显示了髓样转录因子的广泛沉默。此外,造血转录因子的结合位点,包括CEBPA,SPI1和LEF1在这些白血病中是唯一无法进入的。超甲基化也导致CTCF结合的丧失,伴随着涉及关键转录因子的染色质相互作用的变化。总之,表观遗传失调,而不是遗传损伤,解释了该组具有模糊谱系的白血病的混合表型。这里收集的数据为后续急性髓系白血病的研究提供了有用且全面的表观基因组参考,T细胞急性淋巴细胞白血病和混合表型白血病。
    Leukemias with ambiguous lineage comprise several loosely defined entities, often without a clear mechanistic basis. Here, we extensively profile the epigenome and transcriptome of a subgroup of such leukemias with CpG Island Methylator Phenotype. These leukemias exhibit comparable hybrid myeloid/lymphoid epigenetic landscapes, yet heterogeneous genetic alterations, suggesting they are defined by their shared epigenetic profile rather than common genetic lesions. Gene expression enrichment reveals similarity with early T-cell precursor acute lymphoblastic leukemia and a lymphoid progenitor cell of origin. In line with this, integration of differential DNA methylation and gene expression shows widespread silencing of myeloid transcription factors. Moreover, binding sites for hematopoietic transcription factors, including CEBPA, SPI1 and LEF1, are uniquely inaccessible in these leukemias. Hypermethylation also results in loss of CTCF binding, accompanied by changes in chromatin interactions involving key transcription factors. In conclusion, epigenetic dysregulation, and not genetic lesions, explains the mixed phenotype of this group of leukemias with ambiguous lineage. The data collected here constitute a useful and comprehensive epigenomic reference for subsequent studies of acute myeloid leukemias, T-cell acute lymphoblastic leukemias and mixed-phenotype leukemias.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:转座因子在维持神经发育过程中的基因组结构中起着关键作用。短散布核元素(SINE),转座因子的主要亚型,已知具有CCCTC结合因子(CTCF)的结合位点,并且在协调染色质组织中至关重要。然而,在发育中的大脑中控制SINE活性的调节机制仍然难以捉摸。
    结果:在我们的研究中,我们使用ATAC-seq对小鼠神经前体细胞进行了全面的全基因组表观遗传分析,ChIP-seq,全基因组亚硫酸氢盐测序,就地Hi-C,和RNA-seq。我们的发现表明,SET结构域分叉的组蛋白赖氨酸甲基转移酶1(SETDB1)介导的H3K9me3与DNA甲基化结合,限制了神经前体细胞中选择性SINE子集的染色质可及性。机械上,Settb1的丢失会增加CTCF对这些SINE元素的访问,并有助于染色质环的重组。此外,从头环形成有助于差异基因表达,包括有丝分裂途径中富集的基因的失调。这导致在体外和体内对Setdb1进行遗传消融后胚胎脑中细胞增殖的破坏。
    结论:总之,我们的研究揭示了小鼠神经前体细胞中SINE的表观遗传调控,提示它们在维持神经发育过程中染色质组织和细胞增殖中的作用。
    BACKGROUND: Transposable elements play a critical role in maintaining genome architecture during neurodevelopment. Short Interspersed Nuclear Elements (SINEs), a major subtype of transposable elements, are known to harbor binding sites for the CCCTC-binding factor (CTCF) and pivotal in orchestrating chromatin organization. However, the regulatory mechanisms controlling the activity of SINEs in the developing brain remains elusive.
    RESULTS: In our study, we conduct a comprehensive genome-wide epigenetic analysis in mouse neural precursor cells using ATAC-seq, ChIP-seq, whole genome bisulfite sequencing, in situ Hi-C, and RNA-seq. Our findings reveal that the SET domain bifurcated histone lysine methyltransferase 1 (SETDB1)-mediated H3K9me3, in conjunction with DNA methylation, restricts chromatin accessibility on a selective subset of SINEs in neural precursor cells. Mechanistically, loss of Setdb1 increases CTCF access to these SINE elements and contributes to chromatin loop reorganization. Moreover, de novo loop formation contributes to differential gene expression, including the dysregulation of genes enriched in mitotic pathways. This leads to the disruptions of cell proliferation in the embryonic brain after genetic ablation of Setdb1 both in vitro and in vivo.
    CONCLUSIONS: In summary, our study sheds light on the epigenetic regulation of SINEs in mouse neural precursor cells, suggesting their role in maintaining chromatin organization and cell proliferation during neurodevelopment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    发育需要CTCF组织的三维基因组结构。临床鉴定的CTCF突变与不良发育结果有关。然而,潜在的机制仍然难以捉摸。在这次调查中,我们探讨了临床相关的R567W点突变的调节作用,位于CTCF的第11个锌指内,通过将这种突变引入小鼠模型和人类胚胎干细胞来源的皮质类器官模型。具有纯合CTCFR567W突变的小鼠表现出生长障碍,导致产后死亡率,和大脑的偏差,心,和病理和单细胞转录组水平的肺发育。这种突变诱导过早的干细胞样细胞衰竭,加速GABA能神经元的成熟,破坏神经发育和突触通路.此外,它特别阻碍CTCF与核心共识位点上游的外周基序结合,导致局部染色质结构和基因表达的改变,特别是在成簇的protcadherin位点。使用人类皮质类器官的比较分析反映了这种突变引起的后果。总之,这项研究阐明了CTCFR567W突变对人类神经发育障碍的影响,为潜在的治疗干预铺平道路。
    The three-dimensional genome structure organized by CTCF is required for development. Clinically identified mutations in CTCF have been linked to adverse developmental outcomes. Nevertheless, the underlying mechanism remains elusive. In this investigation, we explore the regulatory roles of a clinically relevant R567W point mutation, located within the 11th zinc finger of CTCF, by introducing this mutation into both murine models and human embryonic stem cell-derived cortical organoid models. Mice with homozygous CTCFR567W mutation exhibit growth impediments, resulting in postnatal mortality, and deviations in brain, heart, and lung development at the pathological and single-cell transcriptome levels. This mutation induces premature stem-like cell exhaustion, accelerates the maturation of GABAergic neurons, and disrupts neurodevelopmental and synaptic pathways. Additionally, it specifically hinders CTCF binding to peripheral motifs upstream to the core consensus site, causing alterations in local chromatin structure and gene expression, particularly at the clustered protocadherin locus. Comparative analysis using human cortical organoids mirrors the consequences induced by this mutation. In summary, this study elucidates the influence of the CTCFR567W mutation on human neurodevelopmental disorders, paving the way for potential therapeutic interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:本研究旨在探讨程序性细胞死亡配体1(PD-L1)通过介导CCCTC结合因子(CTCF)表达促进人牙髓干细胞(hDPSCs)增殖和成骨分化的作用及其机制。
    方法:通过免疫共沉淀法验证PD-L1与CTCF的相互作用。用脂多糖或成骨诱导培养基处理用PD-L1过表达和CTCF敲低载体转染的hDPSC。检测炎性细胞因子和骨/牙源性分化相关基因。使用碱性磷酸酶(ALP)和茜素红S染色评估hDPSC的骨/牙源性分化。
    结果:PD-L1过表达抑制LPS诱导的促炎细胞因子上调,细胞增殖,ALP活性,和钙在hDPSC中的沉积,并提高了骨/牙源性分化相关基因的表达;然而,这种表达模式可以通过CTCF敲低逆转。免疫共沉淀结果证实了PD-L1与CTCF的结合,表明hDPSC中PD-L1过表达增加CTCF表达,从而抑制炎症反应并增加hDPSC的骨/牙源性分化。
    结论:PD-L1在hDPSC中的过表达增强了hDPSC的增殖和骨/牙源性分化,并通过上调CTCF表达来抑制炎症反应。
    OBJECTIVE: The aim of this study was to explore the effect and mechanism of programmed cell death ligand 1 (PD-L1) in promoting the proliferation and osteo/odontogenic-differentiation of human dental pulp stem cells (hDPSCs) by mediating CCCTC-binding factor (CTCF) expression.
    METHODS: The interaction between PD-L1 and CTCF was verified through co-immunoprecipitation. hDPSCs transfected with PD-L1 overexpression and CTCF knockdown vectors were treated with lipopolysaccharide or an osteogenic-inducing medium. Inflammatory cytokines and osteo/odontogenic-differentiation related genes were measured. Osteo/odontogenic-differentiation of hDPSCs was assessed using alkaline phosphatase (ALP) and alizarin red S staining.
    RESULTS: Overexpression of PD-L1 inhibited LPS-induced pro-inflammatory cytokine upregulation, cell proliferation, ALP activity, and calcium deposition in hDPSCs and elevated the expression of osteo/odontogenic-differentiation related genes; however, such expression patterns could be reversed by CTCF knockdown. Co-immunoprecipitation results confirmed the binding of PD-L1 to CTCF, indicating that PD-L1 overexpression in hDPSCs increases CTCF expression, thus inhibiting the inflammatory response and increasing osteo/odontogenic-differentiation of hDPSCs.
    CONCLUSIONS: PD-L1 overexpression in hDPSCs enhances the proliferation and osteo/odontogenic-differentiation of hDPSCs and inhibit the inflammatory response by upregulating CTCF expression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    模拟开关(ISWI)家族的催化活性对于某些转录因子的核小体组织和DNA结合至关重要,包括绝缘体蛋白CTCF。在这里,我们通过衍生一组等基因小鼠干细胞系来定义单个亚复合物的贡献,每个都缺少六个ISWI辅助子单元之一。CERF中任何一个亚基的个别缺失,RSF,ACF,WICH或NoRC亚复合物仅适度影响染色质景观,而去除NURF特异性亚基BPTF会导致染色质可及性和CTCF位点周围的SNF2HATP酶定位大大降低。这会影响相邻的核小体占有率和CTCF结合。在一组染色质可及性降低的部位,CTCF结合持续存在,但粘附素占用减少,导致绝缘下降。这些结果表明,CTCF结合可以与其在核组织中作为绝缘子的功能分开,并确定NURF在介导SNF2H定位和结合CTCF位点的染色质开放中的特定作用。
    Catalytic activity of the imitation switch (ISWI) family of remodelers is critical for nucleosomal organization and DNA binding of certain transcription factors, including the insulator protein CTCF. Here we define the contribution of individual subcomplexes by deriving a panel of isogenic mouse stem cell lines, each lacking one of six ISWI accessory subunits. Individual deletions of subunits of either CERF, RSF, ACF, WICH or NoRC subcomplexes only moderately affect the chromatin landscape, while removal of the NURF-specific subunit BPTF leads to a strong reduction in chromatin accessibility and SNF2H ATPase localization around CTCF sites. This affects adjacent nucleosome occupancy and CTCF binding. At a group of sites with reduced chromatin accessibility, CTCF binding persists but cohesin occupancy is reduced, resulting in decreased insulation. These results suggest that CTCF binding can be separated from its function as an insulator in nuclear organization and identify a specific role for NURF in mediating SNF2H localization and chromatin opening at bound CTCF sites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    顺式调节元件(CREs)与反式调节因子相互作用以协调基因表达,但是,在多基因位点中如何协调转录调控还没有实验定义。我们试图表征控制相邻共刺激基因CD28,CTLA4和ICOS的动态表达的CRE,编码T细胞介导免疫的调节因子。在原代人T细胞中进行平铺CRISPR干扰(CRISPRi)筛选,传统和监管子集,未发现的基因-,细胞亚群和刺激特异性CREs。与CRISPR敲除筛选和转座酶可接近的染色质测序分析(ATAC-seq)分析的整合确定了反式调节因子在特定CRISPRi响应元件处影响染色质状态以控制共刺激基因表达。然后,我们发现了关键的CCCTC结合因子(CTCF)边界,该边界增强了CRE与CTLA4的相互作用,同时还防止了CD28的混杂激活。通过直接在原代人T细胞亚群中系统地映射CRE和相关的反式调节因子,这项工作克服了长期的实验限制,以解码复杂的上下文相关的基因调控程序,对免疫稳态至关重要的多基因位点。
    Cis-regulatory elements (CREs) interact with trans regulators to orchestrate gene expression, but how transcriptional regulation is coordinated in multi-gene loci has not been experimentally defined. We sought to characterize the CREs controlling dynamic expression of the adjacent costimulatory genes CD28, CTLA4 and ICOS, encoding regulators of T cell-mediated immunity. Tiling CRISPR interference (CRISPRi) screens in primary human T cells, both conventional and regulatory subsets, uncovered gene-, cell subset- and stimulation-specific CREs. Integration with CRISPR knockout screens and assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling identified trans regulators influencing chromatin states at specific CRISPRi-responsive elements to control costimulatory gene expression. We then discovered a critical CCCTC-binding factor (CTCF) boundary that reinforces CRE interaction with CTLA4 while also preventing promiscuous activation of CD28. By systematically mapping CREs and associated trans regulators directly in primary human T cell subsets, this work overcomes longstanding experimental limitations to decode context-dependent gene regulatory programs in a complex, multi-gene locus critical to immune homeostasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Cohesin在拓扑关联域(TAD)的组织中起着至关重要的作用,影响基因表达和DNA复制时间。表观遗传调节因子是否可以通过粘附素介导DNA复制来影响TAD仍然难以捉摸。这里,我们发现组蛋白去甲基酶PHF2与RAD21相关,RAD21是粘附素的核心亚基,调节小鼠神经干细胞(NSC)中的DNA复制。由于NSC中休眠复制起点的激活,PHF2损失损害DNA复制。值得注意的是,PHF2/RAD21共结合基因组区域的特征是CTCF富集和表观基因组特征,活跃的复制起点,并且可以充当分隔相邻域的边界。因此,由于RAD21占用率降低,PHF2丢失会削弱共结合基因座处的TAD和染色质环。在PHF2KONSC中观察到的拓扑和DNA复制缺陷支持依赖粘附素的机制。此外,我们证明了PHF2/RAD21复合物对基因调控几乎没有影响,PHF2的组蛋白脱甲基酶活性对于正常的DNA复制和NSC的增殖是不必要的。我们建议PHF2可以作为粘附素的拓扑附件,用于粘附素定位到TAD和染色质环,其中cohesin直接或间接抑制休眠复制起点,来维持NSC中的DNA复制。
    Cohesin plays a crucial role in the organization of topologically-associated domains (TADs), which influence gene expression and DNA replication timing. Whether epigenetic regulators may affect TADs via cohesin to mediate DNA replication remains elusive. Here, we discover that the histone demethylase PHF2 associates with RAD21, a core subunit of cohesin, to regulate DNA replication in mouse neural stem cells (NSC). PHF2 loss impairs DNA replication due to the activation of dormant replication origins in NSC. Notably, the PHF2/RAD21 co-bound genomic regions are characterized by CTCF enrichment and epigenomic features that resemble efficient, active replication origins, and can act as boundaries to separate adjacent domains. Accordingly, PHF2 loss weakens TADs and chromatin loops at the co-bound loci due to reduced RAD21 occupancy. The observed topological and DNA replication defects in PHF2 KO NSC support a cohesin-dependent mechanism. Furthermore, we demonstrate that the PHF2/RAD21 complex exerts little effect on gene regulation, and that PHF2\'s histone-demethylase activity is dispensable for normal DNA replication and proliferation of NSC. We propose that PHF2 may serve as a topological accessory to cohesin for cohesin localization to TADs and chromatin loops, where cohesin represses dormant replication origins directly or indirectly, to sustain DNA replication in NSC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    印记基因提供了一个有吸引力的范例来解开转录和基因组结构之间的联系。这些聚集在染色体结构域中的必需基因的亲本等位基因特异性表达是由关键调节DNA序列上的亲本甲基化印记介导的。最近基于染色质构象捕获(3C)的研究表明,在印迹域上,亲本染色体之间拓扑关联域的差异组织。胚胎干细胞和分化细胞。在几个印记域,差异甲基化区域显示绝缘子蛋白CTCF的等位基因结合,和粘着素的焦点保留,仅在非甲基化等位基因上。这会在亲本染色体之间产生染色质循环的差异模式,已经在早期胚胎中,从而促进等位基因表达。最近的研究也唤起了相反的情况,其中等位基因转录有助于差异基因组组织,类似于印迹X染色体失活的报道。这可能是通过对CTCF结合的表观遗传效应发生的,通过RNA聚合酶II的结构效应,或通过印迹具有染色质抑制功能的长非编码RNA。新出现的情况是,表观遗传控制的差异基因组结构在发育过程中先于并促进印迹基因表达,在某些领域,相反,单等位基因基因表达也影响基因组结构。
    Imprinted genes provide an attractive paradigm to unravel links between transcription and genome architecture. The parental allele-specific expression of these essential genes - which are clustered in chromosomal domains - is mediated by parental methylation imprints at key regulatory DNA sequences. Recent chromatin conformation capture (3C)-based studies show differential organization of topologically associating domains between the parental chromosomes at imprinted domains, in embryonic stem and differentiated cells. At several imprinted domains, differentially methylated regions show allelic binding of the insulator protein CTCF, and linked focal retention of cohesin, at the non-methylated allele only. This generates differential patterns of chromatin looping between the parental chromosomes, already in the early embryo, and thereby facilitates the allelic gene expression. Recent research evokes also the opposite scenario, in which allelic transcription contributes to the differential genome organization, similarly as reported for imprinted X chromosome inactivation. This may occur through epigenetic effects on CTCF binding, through structural effects of RNA Polymerase II, or through imprinted long non-coding RNAs that have chromatin repressive functions. The emerging picture is that epigenetically-controlled differential genome architecture precedes and facilitates imprinted gene expression during development, and that at some domains, conversely, the mono-allelic gene expression also influences genome architecture.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    血管内皮细胞功能影响下肢动脉硬化闭塞症(LEASO),而α-2-巨球蛋白(A2M)和CCCTC结合因子(CTCF)与此类细胞的功能密切相关。本文旨在研究CTCF通过调节A2M对LEASO血管内皮细胞的影响。建立LEASO大鼠模型,测量内膜-中膜比,血脂,和炎症因子水平。通过构建LEASO细胞模型,测定细胞活力和细胞凋亡,而自噬相关蛋白,测定股动脉组织和HUVECs中的CTCF和A2M水平。证实了CTCF对A2M的转录调控。在LEASO大鼠模型中,股动脉管腔变窄,内皮细胞紊乱;总胆固醇水平,IL-1和TNF-α增强,HDL-C下降,A2M强表达,CTCF低表达。ox-LDL处理的HUVECs的活力降低,伴随着更高的细胞凋亡,较低的LC3II/I表达,和更高的p62表达,通过sh-A2M转染逆转。CTCF过表达抑制A2M转录,促进HUVECs的活力和自噬,细胞凋亡减少。总的来说,CTCF通过抑制A2M转录改善LEASO中血管内皮细胞的功能。
    Vascular endothelial cell functions affect lower extremity arteriosclerosis obliterans (LEASO), while alpha-2-macroglobulin (A2M) and CCCTC-binding factor (CTCF) are closely related to the function of such cells. This paper aims to identify the influences of CTCF on vascular endothelial cells in LEASO by regulating A2M. A rat model of LEASO was established to measure intima-media ratio, blood lipid, and inflammatory factor levels. By constructing LEASO cell models, cell viability and apoptosis were assayed, while autophagy-related proteins, CTCF and A2M levels in femoral artery tissues and HUVECs were determined. The transcriptional regulation of CTCF on A2M was verified. In LEASO rat models, femoral artery lumen was narrowed and endothelial cells were disordered; levels of total cholesterol, IL-1, and TNF-α enhanced, and HDL-C decreased, with strong expression of A2M and low expression of CTCF. The viability of ox-LDL-treated HUVECs was decreased, together with higher apoptosis, lower LC3II/I expression, and higher p62 expression, which were reversed by sh-A2M transfection. Overexpression of CTCF inhibited A2M transcription, promoted the viability and autophagy of HUVECs, and decreased apoptosis. Collectively, CTCF improves the function of vascular endothelial cells in LEASO by inhibiting A2M transcription.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基因组环境严格地调节调节功能,但难以系统地操纵。鼠胰岛素样生长因子2(Igf2)/H19基因座是增强子选择性的典范模型,由此在印迹控制区的CTCF占据引导下游增强子激活H19或Igf2。我们使用合成调节基因组学,用157kb的有效载荷反复替换天然基因座。我们系统地解剖了它的架构。增强子缺失和异位递送揭示了先前未表征的天然基因座的远程调控依赖性。将H19增强子簇与Sox2基因座控制区(LCR)交换表明,H19增强子依赖于其自然环境,而Sox2LCR则自主发挥作用。对跨细胞类型的调节性DNA致动的分析表明,这些增强子簇在基因组范围内代表了更广泛的上下文敏感性类别。这些结果表明,意外的依赖关系甚至会影响经过充分研究的基因座,我们的方法允许对完整基因座进行大规模操作,以研究调控结构和功能之间的关系。
    Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine insulin-like growth factor 2 (Igf2)/H19 locus is a paradigmatic model of enhancer selectivity, whereby CTCF occupancy at an imprinting control region directs downstream enhancers to activate either H19 or Igf2. We used synthetic regulatory genomics to repeatedly replace the native locus with 157-kb payloads, and we systematically dissected its architecture. Enhancer deletion and ectopic delivery revealed previously uncharacterized long-range regulatory dependencies at the native locus. Exchanging the H19 enhancer cluster with the Sox2 locus control region (LCR) showed that the H19 enhancers relied on their native surroundings while the Sox2 LCR functioned autonomously. Analysis of regulatory DNA actuation across cell types revealed that these enhancer clusters typify broader classes of context sensitivity genome wide. These results show that unexpected dependencies influence even well-studied loci, and our approach permits large-scale manipulation of complete loci to investigate the relationship between regulatory architecture and function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号