CCCTC-Binding Factor

CCCTC - 结合因子
  • 文章类型: Journal Article
    基因调控元件驱动复杂的生物学现象,其突变与人类常见疾病有关。人类调节变体的影响通常使用模型生物如小鼠进行测试。然而,将人类增强子映射到小鼠的保守元素仍然是一个挑战,由于快速增强器进化和当前计算方法的限制。我们从DNase-seq实验的综合数据集中分析了45个匹配的人/小鼠细胞/组织对的远端增强子,并表明虽然细胞特异性调节词汇是保守的,增强子比启动子和CTCF结合位点进化得更快。增强子保存率因细胞类型而异,部分可通过组织特异性转座元件活性解释。我们提出了一种使用gap-kmer特征的改进的基因组比对算法,叫做gkm-align,并对1,401,803个直系同源调控元件进行全基因组预测。我们表明,gkm-align发现了23,660种新的人/小鼠保守增强子被以前的算法错过了,具有保守的功能活动的有力证据。
    Gene regulatory elements drive complex biological phenomena and their mutations are associated with common human diseases. The impacts of human regulatory variants are often tested using model organisms such as mice. However, mapping human enhancers to conserved elements in mice remains a challenge, due to both rapid enhancer evolution and limitations of current computational methods. We analyze distal enhancers across 45 matched human/mouse cell/tissue pairs from a comprehensive dataset of DNase-seq experiments, and show that while cell-specific regulatory vocabulary is conserved, enhancers evolve more rapidly than promoters and CTCF binding sites. Enhancer conservation rates vary across cell types, in part explainable by tissue specific transposable element activity. We present an improved genome alignment algorithm using gapped-kmer features, called gkm-align, and make genome wide predictions for 1,401,803 orthologous regulatory elements. We show that gkm-align discovers 23,660 novel human/mouse conserved enhancers missed by previous algorithms, with strong evidence of conserved functional activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    染色体重排可能会扭曲3D染色质结构,从而改变基因调控,然而,3D染色质结构如何在昆虫中进化在很大程度上是未知的。这里,我们获得了四种蝴蝶的染色体水平基因组,葡萄cloanthus,葡萄,葡萄,分别为2n=30、40和60,和Papiliobianor,2n=60。加上大规模的Hi-C数据,我们发现,染色体间重排很少破坏祖先染色体预先存在的3D染色质结构。然而,与祖先构型相比,一些染色体内重排改变了3D染色质结构。我们发现,在重排位点上出现了新的TAD和subTAD,它们的相邻区室表现出均匀的类型。两个染色体内重排改变了Rel和lft调节,可能有助于机翼模式分化和寄主植物选择。值得注意的是,蝴蝶在Hox基因簇ANT-C和BX-C之间表现出染色质环,不像果蝇.我们在蝴蝶中的CRISPR-Cas9实验证实,敲除BX-C中环的CTCF结合位点会影响ANT-C中Antp调节的表型,导致无腿幼虫。我们的结果揭示了昆虫3D染色质结构的进化模式,并提供了3D染色质结构变化在性状进化中起重要作用的证据。
    Chromosome rearrangements may distort 3D chromatin architectures and thus change gene regulation, yet how 3D chromatin structures evolve in insects is largely unknown. Here, we obtain chromosome-level genomes for four butterfly species, Graphium cloanthus, Graphium sarpedon, Graphium eurypylus with 2n = 30, 40, and 60, respectively, and Papilio bianor with 2n = 60. Together with large-scale Hi-C data, we find that inter-chromosome rearrangements very rarely disrupted the pre-existing 3D chromatin structure of ancestral chromosomes. However, some intra-chromosome rearrangements changed 3D chromatin structures compared to the ancestral configuration. We find that new TADs and subTADs have emerged across the rearrangement sites where their adjacent compartments exhibit uniform types. Two intra-chromosome rearrangements altered Rel and lft regulation, potentially contributing to wing patterning differentiation and host plant choice. Notably, butterflies exhibited chromatin loops between Hox gene cluster ANT-C and BX-C, unlike Drosophila. Our CRISPR-Cas9 experiments in butterflies confirm that knocking out the CTCF binding site of the loops in BX-C affected the phenotypes regulated by Antp in ANT-C, resulting in legless larva. Our results reveal evolutionary patterns of insect 3D chromatin structures and provide evidence that 3D chromatin structure changes can play important roles in the evolution of traits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    转座元件(TE)和其他重复区已被证明含有基因调控元件,包括转录因子结合位点。然而,已证明由重复所携带的调节元件难以使用短读取测序测定(例如ChIP-seq或ATAC-seq)来表征。大多数调控基因组学分析流水线丢弃与多个基因组位置一致的“多重映射”读取。因为多联读取主要来自重复,当前的分析管道无法检测到重复区域中发生的大部分监管事件。为了解决这个缺点,我们开发了Allo,一种以高效的方式分配多映射读取的新方法,准确,和用户友好的方式。Allo将多映射读段的概率映射与识别潜在峰的读段分布特征的卷积神经网络相结合,在多任务读取分配中提供增强的准确性。Allo还以校正的对齐文件的形式提供读取级别输出,使其与现有的调控基因组学分析管道和下游测峰仪兼容。在CTCFChIP-seq数据的演示应用程序中,我们表明,Allo导致发现了数千个新的CTCF峰。这些峰中的许多含有预期的同源基序和/或用作TAD边界。我们还将Allo应用于不同的ENCODEChIP-seq数据集集合,导致转录因子和重复元件家族之间的多个先前未识别的相互作用。最后,我们表明,Allo可能特别有利于识别着丝粒的ChIP-seq峰,接近分段重复的基因,在年轻的TEs中,在这些地区进行新的监管分析。
    Transposable elements (TEs) and other repetitive regions have been shown to contain gene regulatory elements, including transcription factor binding sites. However, regulatory elements harbored by repeats have proven difficult to characterize using short-read sequencing assays such as ChIP-seq or ATAC-seq. Most regulatory genomics analysis pipelines discard \"multimapped\" reads that align equally well to multiple genomic locations. Because multimapped reads arise predominantly from repeats, current analysis pipelines fail to detect a substantial portion of regulatory events that occur in repetitive regions. To address this shortcoming, we developed Allo, a new approach to allocate multimapped reads in an efficient, accurate, and user-friendly manner. Allo combines probabilistic mapping of multimapped reads with a convolutional neural network that recognizes the read distribution features of potential peaks, offering enhanced accuracy in multimapping read assignment. Allo also provides read-level output in the form of a corrected alignment file, making it compatible with existing regulatory genomics analysis pipelines and downstream peak-finders. In a demonstration application on CTCF ChIP-seq data, we show that Allo results in the discovery of thousands of new CTCF peaks. Many of these peaks contain the expected cognate motif and/or serve as TAD boundaries. We additionally apply Allo to a diverse collection of ENCODE ChIP-seq data sets, resulting in multiple previously unidentified interactions between transcription factors and repetitive element families. Finally, we show that Allo may be particularly beneficial in identifying ChIP-seq peaks at centromeres, near segmentally duplicated genes, and in younger TEs, enabling new regulatory analyses in these regions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    谱系模糊的白血病包括几个松散定义的实体,往往没有明确的机械基础。这里,我们广泛分析了CpG岛甲基化表型的此类白血病的一个亚组的表观基因组和转录组。这些白血病表现出相当的混合髓样/淋巴样表观遗传景观,然而异质性遗传改变,这表明它们是由它们共同的表观遗传特征而不是常见的遗传病变定义的。基因表达富集揭示了与早期T细胞前体急性淋巴细胞白血病和淋巴祖细胞起源的相似性。与此相符,差异DNA甲基化和基因表达的整合显示了髓样转录因子的广泛沉默。此外,造血转录因子的结合位点,包括CEBPA,SPI1和LEF1在这些白血病中是唯一无法进入的。超甲基化也导致CTCF结合的丧失,伴随着涉及关键转录因子的染色质相互作用的变化。总之,表观遗传失调,而不是遗传损伤,解释了该组具有模糊谱系的白血病的混合表型。这里收集的数据为后续急性髓系白血病的研究提供了有用且全面的表观基因组参考,T细胞急性淋巴细胞白血病和混合表型白血病。
    Leukemias with ambiguous lineage comprise several loosely defined entities, often without a clear mechanistic basis. Here, we extensively profile the epigenome and transcriptome of a subgroup of such leukemias with CpG Island Methylator Phenotype. These leukemias exhibit comparable hybrid myeloid/lymphoid epigenetic landscapes, yet heterogeneous genetic alterations, suggesting they are defined by their shared epigenetic profile rather than common genetic lesions. Gene expression enrichment reveals similarity with early T-cell precursor acute lymphoblastic leukemia and a lymphoid progenitor cell of origin. In line with this, integration of differential DNA methylation and gene expression shows widespread silencing of myeloid transcription factors. Moreover, binding sites for hematopoietic transcription factors, including CEBPA, SPI1 and LEF1, are uniquely inaccessible in these leukemias. Hypermethylation also results in loss of CTCF binding, accompanied by changes in chromatin interactions involving key transcription factors. In conclusion, epigenetic dysregulation, and not genetic lesions, explains the mixed phenotype of this group of leukemias with ambiguous lineage. The data collected here constitute a useful and comprehensive epigenomic reference for subsequent studies of acute myeloid leukemias, T-cell acute lymphoblastic leukemias and mixed-phenotype leukemias.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:转座因子在维持神经发育过程中的基因组结构中起着关键作用。短散布核元素(SINE),转座因子的主要亚型,已知具有CCCTC结合因子(CTCF)的结合位点,并且在协调染色质组织中至关重要。然而,在发育中的大脑中控制SINE活性的调节机制仍然难以捉摸。
    结果:在我们的研究中,我们使用ATAC-seq对小鼠神经前体细胞进行了全面的全基因组表观遗传分析,ChIP-seq,全基因组亚硫酸氢盐测序,就地Hi-C,和RNA-seq。我们的发现表明,SET结构域分叉的组蛋白赖氨酸甲基转移酶1(SETDB1)介导的H3K9me3与DNA甲基化结合,限制了神经前体细胞中选择性SINE子集的染色质可及性。机械上,Settb1的丢失会增加CTCF对这些SINE元素的访问,并有助于染色质环的重组。此外,从头环形成有助于差异基因表达,包括有丝分裂途径中富集的基因的失调。这导致在体外和体内对Setdb1进行遗传消融后胚胎脑中细胞增殖的破坏。
    结论:总之,我们的研究揭示了小鼠神经前体细胞中SINE的表观遗传调控,提示它们在维持神经发育过程中染色质组织和细胞增殖中的作用。
    BACKGROUND: Transposable elements play a critical role in maintaining genome architecture during neurodevelopment. Short Interspersed Nuclear Elements (SINEs), a major subtype of transposable elements, are known to harbor binding sites for the CCCTC-binding factor (CTCF) and pivotal in orchestrating chromatin organization. However, the regulatory mechanisms controlling the activity of SINEs in the developing brain remains elusive.
    RESULTS: In our study, we conduct a comprehensive genome-wide epigenetic analysis in mouse neural precursor cells using ATAC-seq, ChIP-seq, whole genome bisulfite sequencing, in situ Hi-C, and RNA-seq. Our findings reveal that the SET domain bifurcated histone lysine methyltransferase 1 (SETDB1)-mediated H3K9me3, in conjunction with DNA methylation, restricts chromatin accessibility on a selective subset of SINEs in neural precursor cells. Mechanistically, loss of Setdb1 increases CTCF access to these SINE elements and contributes to chromatin loop reorganization. Moreover, de novo loop formation contributes to differential gene expression, including the dysregulation of genes enriched in mitotic pathways. This leads to the disruptions of cell proliferation in the embryonic brain after genetic ablation of Setdb1 both in vitro and in vivo.
    CONCLUSIONS: In summary, our study sheds light on the epigenetic regulation of SINEs in mouse neural precursor cells, suggesting their role in maintaining chromatin organization and cell proliferation during neurodevelopment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    发育需要CTCF组织的三维基因组结构。临床鉴定的CTCF突变与不良发育结果有关。然而,潜在的机制仍然难以捉摸。在这次调查中,我们探讨了临床相关的R567W点突变的调节作用,位于CTCF的第11个锌指内,通过将这种突变引入小鼠模型和人类胚胎干细胞来源的皮质类器官模型。具有纯合CTCFR567W突变的小鼠表现出生长障碍,导致产后死亡率,和大脑的偏差,心,和病理和单细胞转录组水平的肺发育。这种突变诱导过早的干细胞样细胞衰竭,加速GABA能神经元的成熟,破坏神经发育和突触通路.此外,它特别阻碍CTCF与核心共识位点上游的外周基序结合,导致局部染色质结构和基因表达的改变,特别是在成簇的protcadherin位点。使用人类皮质类器官的比较分析反映了这种突变引起的后果。总之,这项研究阐明了CTCFR567W突变对人类神经发育障碍的影响,为潜在的治疗干预铺平道路。
    The three-dimensional genome structure organized by CTCF is required for development. Clinically identified mutations in CTCF have been linked to adverse developmental outcomes. Nevertheless, the underlying mechanism remains elusive. In this investigation, we explore the regulatory roles of a clinically relevant R567W point mutation, located within the 11th zinc finger of CTCF, by introducing this mutation into both murine models and human embryonic stem cell-derived cortical organoid models. Mice with homozygous CTCFR567W mutation exhibit growth impediments, resulting in postnatal mortality, and deviations in brain, heart, and lung development at the pathological and single-cell transcriptome levels. This mutation induces premature stem-like cell exhaustion, accelerates the maturation of GABAergic neurons, and disrupts neurodevelopmental and synaptic pathways. Additionally, it specifically hinders CTCF binding to peripheral motifs upstream to the core consensus site, causing alterations in local chromatin structure and gene expression, particularly at the clustered protocadherin locus. Comparative analysis using human cortical organoids mirrors the consequences induced by this mutation. In summary, this study elucidates the influence of the CTCFR567W mutation on human neurodevelopmental disorders, paving the way for potential therapeutic interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CCCTC结合因子(CTCF)是一种绝缘体蛋白,可与高度保守的DNA基序结合,并促进三维(3D)核结构和转录的调节。CTCF结合位点(CTCF-BS)存在于非编码DNA中并且在癌症中经常突变。我们之前的研究确定了CTCF-BS的一个小亚类,对CTCF击倒具有抗性,称为持久性CTCF结合位点(P-CTCF-BS)。P-CTCF-BS显示出高结合保守性,并可能调节细胞型组成型3D染色质结构。这里,使用ICGC测序数据,我们进行了惊人的观察,即与所有CTCF-BS相比,P-CTCF-BS在乳腺癌和前列腺癌中显示出高度升高的突变率.为了解决P-CTCF-BS突变是否也在其他细胞类型中富集,我们开发了CTCF-INSITE-一种利用机器学习的工具,根据实验确定的P-CTCF-BS的遗传和表观遗传特征来预测持久性。值得注意的是,预测的P-CTCF-BS在所有12种测试的癌症类型中也显示出显著升高的突变负担。对于P-CTCF-BS突变,富集甚至更强,预测对CTCF结合和染色质循环的功能影响。使用体外结合测定,我们验证了P-CTCF-BS癌症突变,预计会有破坏性,确实降低了CTCF结合。这项研究共同揭示了癌症特异性CTCF-BSDNA突变的新亚类,并提供了它们在泛癌症环境中基因组组织中的重要性的见解。
    CCCTC-binding factor (CTCF) is an insulator protein that binds to a highly conserved DNA motif and facilitates regulation of three-dimensional (3D) nuclear architecture and transcription. CTCF binding sites (CTCF-BSs) reside in non-coding DNA and are frequently mutated in cancer. Our previous study identified a small subclass of CTCF-BSs that are resistant to CTCF knock down, termed persistent CTCF binding sites (P-CTCF-BSs). P-CTCF-BSs show high binding conservation and potentially regulate cell-type constitutive 3D chromatin architecture. Here, using ICGC sequencing data we made the striking observation that P-CTCF-BSs display a highly elevated mutation rate in breast and prostate cancer when compared to all CTCF-BSs. To address whether P-CTCF-BS mutations are also enriched in other cell-types, we developed CTCF-INSITE-a tool utilising machine learning to predict persistence based on genetic and epigenetic features of experimentally-determined P-CTCF-BSs. Notably, predicted P-CTCF-BSs also show a significantly elevated mutational burden in all 12 cancer-types tested. Enrichment was even stronger for P-CTCF-BS mutations with predicted functional impact to CTCF binding and chromatin looping. Using in vitro binding assays we validated that P-CTCF-BS cancer mutations, predicted to be disruptive, indeed reduced CTCF binding. Together this study reveals a new subclass of cancer specific CTCF-BS DNA mutations and provides insights into their importance in genome organization in a pan-cancer setting.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    代际基因表达取决于潜在的DNA序列和表观遗传修饰。后者,这可以导致多样化的基因表达模式在没有DNA改变的情况下跨多代传播,已被称为表观遗传,并已在植物中记录,蠕虫,苍蝇和哺乳动物而与同源DNA序列元件结合的转录因子调节基因表达,表观遗传的分子基础与组蛋白和DNA修饰以及非编码RNA有关.在这里,我们报道了CCAAT盒启动子元件的突变消除了NF-Y结合并破坏了MHCI类转基因的稳定转代表达。在MHCI类转基因中具有突变的CCAAT框的转基因小鼠在多个独立衍生的转基因品系中的同窝同窝和后代中显示转基因的多样化表达。在四代之后,源自单个创始人的CCAAT突变体转基因系稳定地显示出不同的表达模式。组蛋白修饰和RNA聚合酶II结合与CCAAT突变转基因系的表达相关,而DNA甲基化和核小体占据没有。CCAAT盒的突变还导致CTCF结合的变化和与表达状态相关的跨转基因的DNA循环模式。这些研究将CCAAT启动子元件鉴定为稳定的跨代基因表达的调节剂,使得CCAAT盒的突变导致多样化的跨代遗传。考虑到CCAAT盒存在于30%的真核启动子中,这项研究提供了有关基因表达模式的保真度如何在多代中保持的见解。
    Transgenerational gene expression depends on both underlying DNA sequences and epigenetic modifications. The latter, which can result in transmission of variegated gene expression patterns across multiple generations without DNA alterations, has been termed epigenetic inheritance and has been documented in plants, worms, flies and mammals. Whereas transcription factors binding to cognate DNA sequence elements regulate gene expression, the molecular basis for epigenetic inheritance has been linked to histone and DNA modifications and non-coding RNA. Here we report that mutation of the CCAAT box promoter element abrogates NF-Y binding and disrupts the stable transgenerational expression of an MHC class I transgene. Transgenic mice with a mutated CCAAT box in the MHC class I transgene display variegated expression of the transgene among littermates and progeny in multiple independently derived transgenic lines. After 4 generations, CCAAT mutant transgenic lines derived from a single founder stably displayed distinct patterns of expression. Histone modifications and RNA polymerase II binding correlate with expression of CCAAT mutant transgenic lines, whereas DNA methylation and nucleosome occupancy do not. Mutation of the CCAAT box also results in changes to CTCF binding and DNA looping patterns across the transgene that correlate with expression status. These studies identify the CCAAT promoter element as a regulator of stable transgenerational gene expression such that mutation of the CCAAT box results in variegated transgenerational inheritance. Considering that the CCAAT box is present in 30% of eukaryotic promoters, this study provides insights into how fidelity of gene expression patterns is maintained through multiple generations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    模拟开关(ISWI)家族的催化活性对于某些转录因子的核小体组织和DNA结合至关重要,包括绝缘体蛋白CTCF。在这里,我们通过衍生一组等基因小鼠干细胞系来定义单个亚复合物的贡献,每个都缺少六个ISWI辅助子单元之一。CERF中任何一个亚基的个别缺失,RSF,ACF,WICH或NoRC亚复合物仅适度影响染色质景观,而去除NURF特异性亚基BPTF会导致染色质可及性和CTCF位点周围的SNF2HATP酶定位大大降低。这会影响相邻的核小体占有率和CTCF结合。在一组染色质可及性降低的部位,CTCF结合持续存在,但粘附素占用减少,导致绝缘下降。这些结果表明,CTCF结合可以与其在核组织中作为绝缘子的功能分开,并确定NURF在介导SNF2H定位和结合CTCF位点的染色质开放中的特定作用。
    Catalytic activity of the imitation switch (ISWI) family of remodelers is critical for nucleosomal organization and DNA binding of certain transcription factors, including the insulator protein CTCF. Here we define the contribution of individual subcomplexes by deriving a panel of isogenic mouse stem cell lines, each lacking one of six ISWI accessory subunits. Individual deletions of subunits of either CERF, RSF, ACF, WICH or NoRC subcomplexes only moderately affect the chromatin landscape, while removal of the NURF-specific subunit BPTF leads to a strong reduction in chromatin accessibility and SNF2H ATPase localization around CTCF sites. This affects adjacent nucleosome occupancy and CTCF binding. At a group of sites with reduced chromatin accessibility, CTCF binding persists but cohesin occupancy is reduced, resulting in decreased insulation. These results suggest that CTCF binding can be separated from its function as an insulator in nuclear organization and identify a specific role for NURF in mediating SNF2H localization and chromatin opening at bound CTCF sites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    顺式调节元件(CREs)与反式调节因子相互作用以协调基因表达,但是,在多基因位点中如何协调转录调控还没有实验定义。我们试图表征控制相邻共刺激基因CD28,CTLA4和ICOS的动态表达的CRE,编码T细胞介导免疫的调节因子。在原代人T细胞中进行平铺CRISPR干扰(CRISPRi)筛选,传统和监管子集,未发现的基因-,细胞亚群和刺激特异性CREs。与CRISPR敲除筛选和转座酶可接近的染色质测序分析(ATAC-seq)分析的整合确定了反式调节因子在特定CRISPRi响应元件处影响染色质状态以控制共刺激基因表达。然后,我们发现了关键的CCCTC结合因子(CTCF)边界,该边界增强了CRE与CTLA4的相互作用,同时还防止了CD28的混杂激活。通过直接在原代人T细胞亚群中系统地映射CRE和相关的反式调节因子,这项工作克服了长期的实验限制,以解码复杂的上下文相关的基因调控程序,对免疫稳态至关重要的多基因位点。
    Cis-regulatory elements (CREs) interact with trans regulators to orchestrate gene expression, but how transcriptional regulation is coordinated in multi-gene loci has not been experimentally defined. We sought to characterize the CREs controlling dynamic expression of the adjacent costimulatory genes CD28, CTLA4 and ICOS, encoding regulators of T cell-mediated immunity. Tiling CRISPR interference (CRISPRi) screens in primary human T cells, both conventional and regulatory subsets, uncovered gene-, cell subset- and stimulation-specific CREs. Integration with CRISPR knockout screens and assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling identified trans regulators influencing chromatin states at specific CRISPRi-responsive elements to control costimulatory gene expression. We then discovered a critical CCCTC-binding factor (CTCF) boundary that reinforces CRE interaction with CTLA4 while also preventing promiscuous activation of CD28. By systematically mapping CREs and associated trans regulators directly in primary human T cell subsets, this work overcomes longstanding experimental limitations to decode context-dependent gene regulatory programs in a complex, multi-gene locus critical to immune homeostasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号