Bone and implant integration

  • 文章类型: Journal Article
    考虑到成骨细胞的生物活性是至关重要的,当设计新的方法来增强植入物表面的骨整合,因为他们的行为会深刻影响临床结果。成骨细胞增殖和它们的功能分化之间存在着明显的负相关,这限制了大量骨骼的快速生成。检查植入物的表面形态表明,粗糙的钛表面促进快速但薄的骨形成,而光滑,加工表面促进更大量的骨形成,虽然在一个较慢的速度。因此,成骨细胞在粗糙表面上分化更快,但以增殖速度为代价。此外,成骨细胞的附着和初始扩散行为在微粗糙表面上明显受损。这篇综述深入探讨了我们目前对纳米节点纹理的理解和最新进展,中尺度纹理,和紫外光功能化作为解决成骨细胞动力学的“生物学困境”的潜在策略,旨在提高骨整合的质量和数量。我们讨论了这些地形和物理化学策略如何有效地减轻甚至克服成骨细胞行为的二分法以及微粗糙表面带来的生物学挑战。的确,用这些策略修改的表面表现出增强的招募,附件,传播,与光滑表面相比,成骨细胞的增殖,同时保持或放大细胞分化的固有优势。这些技术平台为未来植入物的发展提供了有希望的途径。
    Considering the biological activity of osteoblasts is crucial when devising new approaches to enhance the osseointegration of implant surfaces, as their behavior profoundly influences clinical outcomes. An established inverse correlation exists between osteoblast proliferation and their functional differentiation, which constrains the rapid generation of a significant amount of bone. Examining the surface morphology of implants reveals that roughened titanium surfaces facilitate rapid but thin bone formation, whereas smooth, machined surfaces promote greater volumes of bone formation albeit at a slower pace. Consequently, osteoblasts differentiate faster on roughened surfaces but at the expense of proliferation speed. Moreover, the attachment and initial spreading behavior of osteoblasts are notably compromised on microrough surfaces. This review delves into our current understanding and recent advances in nanonodular texturing, meso-scale texturing, and UV photofunctionalization as potential strategies to address the \"biological dilemma\" of osteoblast kinetics, aiming to improve the quality and quantity of osseointegration. We discuss how these topographical and physicochemical strategies effectively mitigate and even overcome the dichotomy of osteoblast behavior and the biological challenges posed by microrough surfaces. Indeed, surfaces modified with these strategies exhibit enhanced recruitment, attachment, spread, and proliferation of osteoblasts compared to smooth surfaces, while maintaining or amplifying the inherent advantage of cell differentiation. These technology platforms suggest promising avenues for the development of future implants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    钛植入物彻底改变了修复和重建疗法,然而,实现最佳骨整合和确保长期植入成功仍然是持续的挑战.在这次审查中,我们探索了一种尖端的方法来提高植入物的性能:紫外线(UV)光功能化。通过利用紫外线能量,光功能化使老化的植入物恢复活力,利用并经常超越钛材料的内在潜力。这篇叙述性评论的主要目的是提供关于该领域取得的进步的最新观点,提供最新发现的全面概述,并探索紫外线诱导的物理化学改变与细胞反应之间的关系。现在有令人信服的证据表明,光功能化引起的钛表面化学发生了重大转变,从富含碳氢化合物的表面过渡到无碳薄膜的表面,产生超亲水表面,和调节静电特性。这些变化与细胞附着的改善密切相关,传播,扩散,分化,and,最终,骨整合。此外,我们讨论了临床研究,证明了紫外光功能化在加速和增强牙种植体骨结合方面的功效。此外,我们深入研究最近的进展,包括一分钟真空UV(VUV)光功能化的发展,它解决了常规UV方法的局限性以及新发现的光功能化在调节软组织和细菌界面方面的功能。通过阐明表面科学与生物学之间的复杂关系,这项研究为旨在提高钛植入物临床性能的创新策略奠定了基础,标志着植入学的新时代。
    Titanium implants have revolutionized restorative and reconstructive therapy, yet achieving optimal osseointegration and ensuring long-term implant success remain persistent challenges. In this review, we explore a cutting-edge approach to enhancing implant properties: ultraviolet (UV) photofunctionalization. By harnessing UV energy, photofunctionalization rejuvenates aging implants, leveraging and often surpassing the intrinsic potential of titanium materials. The primary aim of this narrative review is to offer an updated perspective on the advancements made in the field, providing a comprehensive overview of recent findings and exploring the relationship between UV-induced physicochemical alterations and cellular responses. There is now compelling evidence of significant transformations in titanium surface chemistry induced by photofunctionalization, transitioning from hydrocarbon-rich to carbon pellicle-free surfaces, generating superhydrophilic surfaces, and modulating the electrostatic properties. These changes are closely associated with improved cellular attachment, spreading, proliferation, differentiation, and, ultimately, osseointegration. Additionally, we discuss clinical studies demonstrating the efficacy of UV photofunctionalization in accelerating and enhancing the osseointegration of dental implants. Furthermore, we delve into recent advancements, including the development of one-minute vacuum UV (VUV) photofunctionalization, which addresses the limitations of conventional UV methods as well as the newly discovered functions of photofunctionalization in modulating soft tissue and bacterial interfaces. By elucidating the intricate relationship between surface science and biology, this body of research lays the groundwork for innovative strategies aimed at enhancing the clinical performance of titanium implants, marking a new era in implantology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号