Begomovirus

Begomovirus
  • 文章类型: Journal Article
    番茄卷叶新德里病毒(ToLCNDV)是一种在全球范围内引起严重甜瓜(Cucumismelo)作物损失的双生病毒。本研究旨在绘制PI414723甜瓜中的ToLCNDV抗性图谱,先前通过表型研究鉴定和表征,从而探索与已建立的抗性来源WM-7共享的基因组区域。在本研究中,WM-7和PI414723分别与易感物种“Rochet”和“Blanco”杂交,产生F1杂种。将这些杂种自花授粉以产生用于定位ToLCNDV抗性区域和设计用于标记辅助选择的标记的群体。疾病评估包括视觉症状评分,病毒载量定量和组织打印。通过测序和SNP标记进行基因分型用于定量性状基因座(QTL)作图。对于遗传分析,进行qPCR和大量分离体RNA-seq(BSR-seq)。使用RNA-seq评估基因表达,并使用qRT-PCR进行确认。该研究缩小了WM-7中抗性的候选区域,并确定了在DNA引发酶大亚基区域中发现的PI414723中11号染色体上重叠的QTL。BSR-seq和表达分析强调了2号染色体在赋予抗性中的潜在调节作用。证实了2号染色体上候选区域中6个基因的差异表达。这项研究证实了PI414723和WM-7中存在共同的抗性基因。
    Tomato leaf curl New Delhi virus (ToLCNDV) is a begomovirus causing significant melon (Cucumis melo) crop losses globally. This study aims to map the ToLCNDV resistance in the PI 414723 melon accession, previously identified and characterized through phenotypic studies, thereby exploring shared genomic regions with the established resistant source WM-7. In the present study, WM-7 and PI 414723 were crossed with the susceptible accessions \'Rochet\' and \'Blanco\' respectively, to generate F1 hybrids. These hybrids were self-pollinated to generate the populations for mapping the ToLCNDV resistance region and designing markers for marker-assisted selection. Disease evaluation included visual symptom scoring, viral-load quantification and tissue printing. Genotyping-by-sequencing and SNP markers were used for quantitative trait loci (QTL) mapping. For genetic analysis, qPCR and bulked segregant RNA-seq (BSR-seq) were performed. Gene expression was assessed using RNA-seq, and qRT-PCR was used for confirmation. The research narrows the candidate region for resistance in WM-7 and identifies overlapping QTLs on chromosome 11 in PI 414723, found in the region of the DNA primase large subunit. BSR-seq and expression analyses highlight potential regulatory roles of chromosome 2 in conferring resistance. Differential expression was confirmed for six genes in the candidate region on chromosome 2. This study confirms the existence of common resistance genes in PI 414723 and WM-7.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    印度次大陆的辣椒种植受到病毒性疾病的严重影响,促使人们需要环境友好的疾病控制方法。为了实现这一点,了解辣椒病毒抗性的分子机制至关重要。已知非病原发生相关基因1(NPR1)基因通过激活系统获得性抗性(SAR)提供对各种植物病原体的广谱抗性。深入了解NPR1基因在辣椒感染过程中的表达及其与不同生化和生理参数的相关性,对于提高辣椒对辣椒的抗逆性至关重要。然而,关于辣椒CaNPR基因及其在生物胁迫中的作用的有限信息限制了其在抗生物胁迫育种中的潜力。通过使用生物信息学进行基因组挖掘,我们在辣椒中鉴定出5个CaNPR基因。CaNPR基因1,500bp的启动子区域包含与生物应激反应相关的顺式元件,表明他们参与了生物应激反应。此外,这些基因启动子包含与光相关的成分,发展,和激素反应,表明它们在植物激素反应和发育中的作用。MicroRNAs在调节这5个CaNPR基因中发挥了重要作用,强调它们在辣椒基因调控中的意义。接种斑马病毒“棉叶卷曲Khokhran病毒(CLCuKV)”对辣椒植物的生长产生不利影响,导致发育迟缓,纤维根,和明显的病毒症状。接种CLCuKV的两个地方辣椒品种的qRT-PCR分析,一种对斑马病毒具有抗性(V1),另一种对斑马病毒具有易感性(V2),表明CaNPR1可能提供扩展的抗性,并在辣椒植物防御机制中发挥作用,而其余的基因在感染的早期阶段被激活。这些发现揭示了辣椒CaNPR在生物胁迫反应中的功能,并确定了抗生物胁迫育种的潜在基因。然而,进一步研究,包括基因克隆和功能分析,需要确认这些基因在各种生理和生物过程中的作用。这种计算机内分析增强了我们对辣椒CaNPR基因在双歧病毒感染期间如何反应的全基因组理解。
    Chili pepper cultivation in the Indian subcontinent is severely affected by viral diseases, prompting the need for environmentally friendly disease control methods. To achieve this, it is essential to understand the molecular mechanisms of viral resistance in chili pepper. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) genes are known to provide broad-spectrum resistance to various phytopathogens by activating systemic acquired resistance (SAR). An in-depth understanding of NPR1 gene expression during begomovirus infection and its correlation with different biochemical and physiological parameters is crucial for enhancing resistance against begomoviruses in chili pepper. Nevertheless, limited information on chili CaNPR genes and their role in biotic stress constrains their potential in breeding for biotic stress resistance. By employing bioinformatics for genome mining, we identify 5 CaNPR genes in chili. The promoter regions of 1,500 bp of CaNPR genes contained cis-elements associated with biotic stress responses, signifying their involvement in biotic stress responses. Furthermore, these gene promoters harbored components linked to light, development, and hormone responsiveness, suggesting their roles in plant hormone responses and development. MicroRNAs played a vital role in regulating these five CaNPR genes, highlighting their significance in the regulation of chili genes. Inoculation with the begomovirus \"cotton leaf curl Khokhran virus (CLCuKV)\" had a detrimental effect on chili plant growth, resulting in stunted development, fibrous roots, and evident virus symptoms. The qRT-PCR analysis of two local chili varieties inoculated with CLCuKV, one resistant (V1) and the other susceptible (V2) to begomoviruses, indicated that CaNPR1 likely provides extended resistance and plays a role in chili plant defense mechanisms, while the remaining genes are activated during the early stages of infection. These findings shed light on the function of chili\'s CaNPR in biotic stress responses and identify potential genes for biotic stress-resistant breeding. However, further research, including gene cloning and functional analysis, is needed to confirm the role of these genes in various physiological and biological processes. This in-silico analysis enhances our genome-wide understanding of how chili CaNPR genes respond during begomovirus infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在过去的十年中,对独生病毒仅通过粉虱烟粉虱(Gennadius)传播的传统理解已经随着某些独生病毒中种子传播的发现而发生了变化。我们调查了葫芦叶皱病毒(CuLCrV)的种子传播性,一种两体的七叶树病毒,最近在美国东南部成为黄南瓜(CucurbitapepoL.)生产的严重制约因素。我们在受感染南瓜的雄性和雌性花组织中发现高浓度的CuLCrV,包括花粉和胚珠。病毒浸润了果实组织,包括内果皮和真菌,它们在解剖学上位于种子附近。在种子中,在没有血管连接的胚乳和胚胎中检测到CuLCrV,除了种皮。在胚根中检测到病毒,plumule,子叶,和从受感染水果收集的种子长出的幼苗的真叶。在进行的成长测试中,CuLCrV感染范围为后代植物的17-56%。为了确保部分病毒基因组片段不会被误认为是病毒的复制形式,我们进行了RCA-PCR,并从种子组织中扩增了CuLCrV的完整DNA-A和DNA-B,幼苗,CuLCrV感染南瓜的后代植物。从后代植物中回收了CuLCrV的几乎完整的DNA-A和DNA-B序列,进一步验证我们的发现。我们的结果表明,CuLCrV可以从黄南瓜的营养组织转移到生殖组织,坚持在种子中,随后在后代植物中诱导感染,确认其种子传播能力。
    The traditional understanding of begomovirus transmission exclusively through the whitefly Bemisia tabaci (Gennadius) has shifted with findings of seed transmission in some begomoviruses over the last decade. We investigated the seed transmissibility of cucurbit leaf crumple virus (CuLCrV), a bipartite begomovirus that has recently emerged as a severe constraint for yellow squash (Cucurbita pepo L.) production in the southeastern United States. We found high concentration of CuLCrV in male and female flower tissues of infected squash, including pollen and ovules. The virus infiltrated the fruit tissues including the endocarp and funiculus, which are anatomically positioned adjacent to the seeds. In seeds, CuLCrV was detected in the endosperm and embryo where there are no vascular connections, in addition to the seed coat. The virus was detected in the radicle, plumule, cotyledonary leaves, and true leaves of seedlings grown from seeds collected from infected fruits. In the grow-out test conducted, CuLCrV infections ranged from 17-56% of the progeny plants. To ensure that partial viral genome fragments were not being mistaken for replicative forms of the virus, we performed RCA ̶ PCR and amplified complete DNA-A and DNA-B of CuLCrV from seed tissues, seedlings, progeny plants of CuLCrV infected squash. Near complete DNA-A and DNA-B sequences of CuLCrV were recovered from a progeny plant, further validating our findings. Our results demonstrate that CuLCrV can translocate from vegetative to reproductive tissues of yellow squash, persist within the seeds, and subsequently induce infection in progeny plants, confirming its capacity for seed transmission.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    甘薯粉虱,烟粉虱MEAM1,是世界上最具破坏性的作物蔬菜害虫之一,直接通过喂食和间接通过许多不同的病毒的传播来破坏作物,包括双生病毒番茄黄化曲叶病毒(TYLCV)。在番茄中TYLCV感染的不同阶段进行了Y管嗅觉仪测试,以了解TYLCV如何影响烟粉虱行为。我们还使用彩色分光光度法和气相色谱-质谱(GC-MS)记录了番茄宿主的颜色和挥发性特征的变化。我们发现烟粉虱的感染状态和TYLCV的感染阶段影响宿主的选择,对于未感染的白飞蝇,显示出对感染TYLCV的宿主的偏好,尤其是在感染的后期。对视觉目标的有毒烟粉芽孢杆菌的吸引力与非有毒烟粉芽孢杆菌明显不同。晚期感染的宿主具有较大的表面积,反映了黄绿色波长,并且在其挥发性分布中水杨酸甲酯的排放量较高。这些发现为涉及昆虫载体及其经济上重要的宿主的病毒操纵的几种关键机制提供了新的思路。
    The sweetpotato whitefly, Bemisia tabaci MEAM1, is one of the most devastating pests of row-crop vegetables worldwide, damaging crops directly through feeding and indirectly through the transmission of many different viruses, including the geminivirus Tomato yellow leaf curl virus (TYLCV). Y-tube olfactometer tests were conducted at different stages of TYLCV infection in tomatoes to understand how TYLCV affects B. tabaci behavior. We also recorded changes in tomato hosts\' color and volatile profiles using color spectrophotometry and gas chromatography-mass spectrometry (GC-MS). We found that the infection status of B. tabaci and the infection stage of TYLCV influenced host selection, with uninfected whiteflies showing a preference for TYLCV-infected hosts, especially during the late stages of infection. Viruliferous B. tabaci attraction to visual targets significantly differed from non-viruliferous B. tabaci. Late-stage infected hosts had larger surface areas reflecting yellow-green wavelengths and higher emissions of methyl salicylate in their volatile profiles. These findings shed new light on several critical mechanisms involved in the viral manipulation of an insect vector and its economically important host.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    韧皮部特异性启动子有效触发移植物可传输的RNA干扰(gtRNAi)。我们利用了来自Ricetungro杆状病毒的韧皮部特异性启动子,优化RNAi机制的效率和特异性。这里,我们通过嫁接实验详细介绍了基于韧皮部特异性启动子的gtRNAi系统的构建及其应用,证明了其在非转基因接穗中诱导番茄黄叶卷曲泰国病毒(TYLCHTV)抗性的有效性。该策略提供了在不对整个植物进行遗传修饰的情况下保护作物免受病毒侵害的实际应用。
    Phloem-specific promoter efficiently triggers graft-transmissible RNA interference (gtRNAi). We leveraged a phloem-specific promoter derived from the Rice tungro bacilliform virus, optimizing the RNAi mechanism\'s efficiency and specificity. Here, we detail the construction of phloem-specific promoter-based gtRNAi system and its application through grafting experiments, demonstrating its effectiveness in inducing tomato yellow leaf curl Thailand virus (TYLCHTV) resistance in non-transgenic scions. This strategy presents a practical application for protecting crops against viruses without genetically modifying the entire plant.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在属于Begomovirus属的双生病毒中,外壳蛋白(CP)的表达取决于病毒AL2蛋白,其通过位于病毒基因间区域(IR)内的序列元件去抑制并激活CP启动子。然而,AL2不表现出序列特异性DNA结合活性,而是通过与宿主因子的相互作用而指向反应性启动子。最有可能的转录激活因子和/或抑制因子。在这项研究中,我们描述了一种抑制性植物特异性转录因子,拟南芥TCP24(AtTCP24),与AL2相互作用并识别CP启动子(GTCGTCCC)中的II类TCP结合位点。该基序对应于先前鉴定的保守晚期元素(CLE)。我们还报道了组蛋白3赖氨酸27三甲基化(H3K27me3),与兼性抑制相关的表观遗传标记,在病毒IR上富集。H3K27me3通过聚梳抑制络合物2(PRC2)沉积,植物和动物基因表达和发育的关键调节因子。值得注意的是,番茄金花叶病毒(TGMV)和卷心菜曲叶病毒(CaLCuV)CP启动子中TCP24结合位点(CLE)的突变极大地降低了病毒染色质上的H3K27me3水平,并导致感染的拟南芥和烟草的疾病症状显着延迟和减弱。症状缓解伴随着系统性感染组织中病毒DNA水平的降低。然而,在瞬时复制试验中,CLE突变延迟但不限制病毒双链DNA的积累,尽管单链DNA和CPmRNA水平降低。这些发现表明,TCP24与CLE的结合导致CP启动子抑制和H3K27me3沉积,而TCP24-AL2相互作用可能会招募AL2去抑制并激活启动子。因此,抑制性宿主转录因子可以被重新用于靶向启动子活性所必需的病毒因子。CLE在许多begomovirus中的存在表明了晚期启动子调控的常见方案。
    In geminiviruses belonging to the genus Begomovirus, coat protein (CP) expression depends on viral AL2 protein, which derepresses and activates the CP promoter through sequence elements that lie within the viral intergenic region (IR). However, AL2 does not exhibit sequence-specific DNA binding activity but is instead directed to responsive promoters through interactions with host factors, most likely transcriptional activators and/or repressors. In this study, we describe a repressive plant-specific transcription factor, Arabidopsis thaliana TCP24 (AtTCP24), that interacts with AL2 and recognizes a class II TCP binding site in the CP promoter (GTGGTCCC). This motif corresponds to the previously identified conserved late element (CLE). We also report that histone 3 lysine 27 trimethylation (H3K27me3), an epigenetic mark associated with facultative repression, is enriched over the viral IR. H3K27me3 is deposited by Polycomb Repressive Complex 2 (PRC2), a critical regulator of gene expression and development in plants and animals. Remarkably, mutation of the TCP24 binding site (the CLE) in tomato golden mosaic virus (TGMV) and cabbage leaf curl virus (CaLCuV) CP promoters greatly diminishes H3K27me3 levels on viral chromatin and causes a dramatic delay and attenuation of disease symptoms in infected Arabidopsis and Nicotiana benthamiana plants. Symptom remission is accompanied by decreased viral DNA levels in systemically infected tissue. Nevertheless, in transient replication assays CLE mutation delays but does not limit the accumulation of viral double-stranded DNA, although single-stranded DNA and CP mRNA levels are decreased. These findings suggest that TCP24 binding to the CLE leads to CP promoter repression and H3K27me3 deposition, while TCP24-AL2 interaction may recruit AL2 to derepress and activate the promoter. Thus, a repressive host transcription factor may be repurposed to target a viral factor essential for promoter activity. The presence of the CLE in many begomoviruses suggests a common scheme for late promoter regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本研究报告了一种新的单节斑马病毒的完整基因组,暂定名为“Citharexylum曲叶病毒”(CitLCuV),与印度刺槐的卷叶病有关。CitLCuV基因组(2767个核苷酸)包含旧世界初生病毒的典型基因组组织,与木瓜叶皱病毒(PaLCrV)分离株具有89.7%的最大核苷酸序列同一性。此外,在CitLCuV基因组的互补链中确定了两个小的非规范开放阅读框(C5和C6)。系统发育分析揭示了CitLCuV与PaLCrV和玫瑰卷叶病毒的相关性。重组分析在CitLCuV基因组中检测到可能的重组事件。根据Begomovirus物种划分标准,CitLCuV可以被认为是一种新型的双歧病毒。
    The present study reports the complete genome of a novel monopartite begomovirus, named tentatively as \"Citharexylum leaf curl virus\" (CitLCuV), associated with leaf curl disease of Citharexylum spinosum in India. CitLCuV genome (2767 nucleotide) contained the typical genome organization of Old World begomoviruses and shared the maximum nucleotide sequence identity of 89.7% with a papaya leaf crumple virus (PaLCrV) isolate. In addition, two small non-canonical open reading frames (C5 and C6) were determined in the complementary strand of CitLCuV genome. Phylogenetic analysis revealed the relatedness of CitLCuV to PaLCrV and rose leaf curl virus. Recombination analysis detected a possible recombination event in CitLCuV genome. Based on begomovirus species demarcation criteria, CitLCuV can be regarded as a novel begomoviral species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    番茄静脉间萎黄病病毒(ToICV;Begomovirussolanumintervae,Begomovirus属,双生病毒科)已被描述为在巴西东北部(NE)感染番茄(Solanumlycopersicum)和甲脂甲苷类(Albuquerque等人。,2012;席尔瓦等人。,2012).在2020年的一项调查中,在Alagoas州观察到了表现出病毒样症状的豆科杂草Rhynchosiaminima植物,东北巴西。随机收集R.minima的症状叶样品(n=15;补充图1)。来自每个样品的总DNA用作模板,用于使用简并引物对PAL1v1978和PAR1c496对双生病毒通用的部分双生病毒DNA-A序列进行PCR扩增(Rojas等人。,1993).从12个样品中观察到~1.2kbp的扩增子,尽管这不应该被认为是发病率,因为只收集了有症状的植物。为了鉴定与小R.minima相关的双生病毒,使用滚环扩增(RCA)从PCR阳性样品中扩增病毒基因组(Inoue-Nagata等人。,2004).用HindIII消化RCA产物,克隆到pBluescriptIIKS质粒载体中,并进行双向Sanger测序(MacrogenInc.,首尔)。BLASTn搜索表明,此处报告的克隆(n=4)对应于BegomovirusDNA-A成分,两两比较表明,他们与ToICV有着最高的身份,在92.4-94.7%的核苷酸序列同一性。基于Begomovirus属≥91%核苷酸同一性的物种划分标准(Brown等人。,2015),从R.minima获得的Begomovirus是ToICV的新分离株。长度为2,619-2,623nt的新DNA-A序列以登录号PP639092至PP639095保存在GenBank中。使用在MEGAv.11中实施的MUSCLE算法(Kumar等人。,2018),并在RaxML-NG中重建了最大似然(ML)树(Kozlov等人。,2019),假设一般的时间可逆(GTR)核苷酸取代模型具有γ(G)模型的速率异质性和1,000个自举重复。基于DNA-A的树显示ToICV序列聚集成单系群,另外支持这些分离株作为茄科病毒物种的成员。在ToICV分离株中预测了至少两个独立的种间重组事件,断点位于Rep编码区域和ToICV(GenBank加入JF803253),番茄斑驳卷叶病毒(JF803248)和大豆起泡花叶病毒(MN486865)被检测为推定亲本。据我们所知,这是ToICV在全球范围内感染R.minima的第一份报告,扩大了这种初生病毒的宿主范围。非栽培植物,例如R.minima作为菜鸟病毒的储库和接种物来源起着至关重要的作用(Paz-Carrasco等人。,2014),加强它们与社会经济重要作物的相关性。
    Tomato interveinal chlorosis virus (ToICV; Begomovirus solanumintervenae, genus Begomovirus, family Geminiviridae) has been described infecting tomato (Solanum lycopersicum) and Macroptilium lathyroides in Northeastern (NE) Brazil for more than a decade (Albuquerque et al., 2012; Silva et al., 2012). During a survey in 2020, plants of the leguminous weed Rhynchosia minima exhibiting virus-like symptoms such as mosaic and interveinal chlorosis were observed in the state of Alagoas, NE Brazil. Symptomatic leaf samples of R. minima were randomly collected (n=15; supplementary figure 1). Total DNA from each sample was used as a template for PCR amplification of partial begomoviral DNA-A sequences using the degenerate primer pair PAL1v1978 and PAR1c496, universal for geminiviruses (Rojas et al., 1993). Amplicons of ~1.2 kbp were observed from 12 samples, although this should not be considered as incidence since only symptomatic plants were collected. To identify the begomovirus associated with R. minima, viral genomes were amplified from PCR-positive samples using rolling circle amplification (RCA) (Inoue-Nagata et al., 2004). The RCA products were digested with HindIII, cloned into the pBluescript II KS+ plasmid vector and bidirectionally Sanger-sequenced (Macrogen Inc., Seoul). BLASTn searches indicated that the clones (n=4) reported here corresponded to a begomovirus DNA-A component, and pairwise comparisons showed that they shared the highest identity with ToICV, at 92.4-94.7% nucleotide sequence identity. Based on the species demarcation criteria of ≥91% nucleotide identity for the genus Begomovirus (Brown et al., 2015), the begomoviruses obtained from R. minima are new isolates of ToICV. The new DNA-A sequences of 2,619-2,623 nt in length were deposited in GenBank under accession numbers PP639092 to PP639095. Multiple nucleotide sequence alignments were prepared using the MUSCLE algorithm implemented in MEGA v.11 (Kumar et al., 2018), and a maximum likelihood (ML) tree was reconstructed in RaxML-NG (Kozlov et al., 2019), assuming a general time reversible (GTR) nucleotide substitution model with a gamma (G) model of rate heterogeneity and 1,000 bootstrap replicates. The DNA-A-based tree showed that the ToICV sequences clustered into a monophyletic group, additionally supporting these isolates as members of the species Begomovirus solanumintervenae. At least two independent interspecies recombination events were predicted among the ToICV isolates, with breakpoints located in the Rep-encoding region and ToICV (GenBank Accession JF803253), tomato mottle leaf curl virus (JF803248) and soybean blistering mosaic virus (MN486865) detected as putative parents. To the best of our knowledge, this is the first report of ToICV infecting R. minima worldwide, expanding the host range of this begomovirus. Non-cultivated plants such as R. minima play a crucial role as reservoirs and sources of inoculum for begomoviruses (Paz-Carrasco et al., 2014), reinforcing their relevance to socioeconomically important crops.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Begomovirus已经成为农作物的破坏性病原体,特别是在热带和亚热带,造成巨大的经济损失,威胁粮食安全。由菜鸟病毒引起的流行病甚至在以前没有这些病毒的地区和作物中传播。受影响最严重的作物包括木薯;棉花;谷物豆类;和葫芦,白质,和茄科蔬菜。Alphasatellites,Betasatellites,和deltasatelles与由begomovirus引起的疾病有关,但是白生病毒-β卫星复合物在白生病毒的进化中发挥了重要作用,在全世界许多经济上重要的作物中引起广泛的流行病。这篇文章提供了一个演变的概述,分布,以及β卫星在抑制寄主植物防御反应和增加疾病严重程度方面使用的方法。
    Begomoviruses have emerged as destructive pathogens of crops, particularly in the tropics and subtropics, causing enormous economic losses and threatening food security. Epidemics caused by begomoviruses have even spread in regions and crops that were previously free from these viruses. The most seriously affected crops include cassava; cotton; grain legumes; and cucurbitaceous, malvaceous, and solanaceous vegetables. Alphasatellites, betasatellites, and deltasatellites are associated with the diseases caused by begomoviruses, but begomovirus-betasatellite complexes have played significant roles in the evolution of begomoviruses, causing widespread epidemics in many economically important crops throughout the world. This article provides an overview of the evolution, distribution, and approaches used by betasatellites in the suppression of host plant defense responses and increasing disease severity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    抗病基因(R基因)编码的核苷酸结合富含亮氨酸的重复蛋白(NLR)是植物宿主防御机制中的关键角色,因为它们作为识别病原体效应子并触发植物效应子触发的免疫(ETI)的受体。本研究旨在确定位于12号染色体上的木薯卷曲螺旋(CC)-NLR(CNL)基因MeRPPL1(Man.12G091600)(单等位基因)在对南非木薯花叶病毒的耐受性或易感性中的推定作用(SACMV),木薯花叶病(CMD)的病因之一。使用瞬时原生质体系统通过成簇的规则间隔的短回文重复序列-CRISPR相关蛋白9(CRISPR-Cas9)敲低MeRPPL1的表达。靶向MeRPPL1的CRISPR载体和/或SACMVDNAA和DNAB感染性克隆用于转染从SACMV耐受木薯(Manihotesculenta)品种TME3的叶肉细胞中分离的原生质体。无论是否存在SACMV共感染,CRISPR/Cas9沉默载体均显著降低原生质体中的MeRPPL1表达。值得注意的是,MeRPPL1表达水平较低的原生质体中的SACMVDNAA复制高于未沉默的原生质体。诱变研究表明,与CRISPR-MeRPPL1沉默载体+SACMV共转染的原生质体和仅用SACMV转染诱导的核苷酸取代突变,导致MeRPPL1翻译多肽的高度保守的MHD基序中的氨基酸改变。这可能会消除或改变MHD基序在控制R蛋白活性中的调节作用,并可能导致在MeRPPL1沉默的原生质体中观察到的SACMV-DNAA积累的增加。本文的结果首次证明了CNL基因在对TME3中的双生病毒的耐受性中的作用。
    Disease resistance gene (R gene)-encoded nucleotide-binding leucine-rich repeat proteins (NLRs) are critical players in plant host defence mechanisms because of their role as receptors that recognise pathogen effectors and trigger plant effector-triggered immunity (ETI). This study aimed to determine the putative role of a cassava coiled-coil (CC)-NLR (CNL) gene MeRPPL1 (Manes.12G091600) (single allele) located on chromosome 12 in the tolerance or susceptibility to South African cassava mosaic virus (SACMV), one of the causal agents of cassava mosaic disease (CMD). A transient protoplast system was used to knock down the expression of MeRPPL1 by clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9). The MeRPPL1-targeting CRISPR vectors and/or SACMV DNA A and DNA B infectious clones were used to transfect protoplasts isolated from leaf mesophyll cells from the SACMV-tolerant cassava (Manihot esculenta) cultivar TME3. The CRISPR/Cas9 silencing vector significantly reduced MeRPPL1 expression in protoplasts whether with or without SACMV co-infection. Notably, SACMV DNA A replication was higher in protoplasts with lower MeRPPL1 expression levels than in non-silenced protoplasts. Mutagenesis studies revealed that protoplast co-transfection with CRISPR-MeRPPL1 silencing vector + SACMV and transfection with only SACMV induced nucleotide substitution mutations that led to altered amino acids in the highly conserved MHD motif of the MeRPPL1-translated polypeptide. This may abolish or alter the regulatory role of the MHD motif in controlling R protein activity and could contribute to the increase in SACMV-DNA A accumulation observed in MeRPPL1-silenced protoplasts. The results herein demonstrate for the first time a role for a CNL gene in tolerance to a geminivirus in TME3.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号