Bacteria detection

细菌检测
  • 文章类型: Journal Article
    食源性细菌污染的监测需要简单方便的生物传感器。这项工作描述了一种新型的纸质比色生物传感器,用于快速和灵敏的细菌检测。生物传感器是通过将D-丙氨酰-D-丙氨酸覆盖的金纳米颗粒(DADA-AuNP)封装在改性纸中而构建的,该改性纸是通过冷冻干燥TEMPO氧化的纤维素纳米纤维/阳离子瓜尔胶复合水凝胶改性的滤纸制成的。结果表明,DADA-AuNP的尺寸在很大程度上决定了它们的水性体系的颜色,并且当它们的尺寸从大约6增加到36nm时,它们表现出浅红色到暗红色。当遇到金黄色葡萄球菌或大肠杆菌时,所有这些不同大小的DADA-AuNP变成无色。特别是,DADA-AuNPs的大小越小,变色越快。将DADA-AuNP封装到改性纸中可忽略地改变其对细菌的反应性。与原始滤纸和烘箱干燥的水凝胶改性滤纸相比,冷冻干燥的水凝胶改性纸被证明是封装DADA-AuNP的更好的底物,因为它们可以以更快的方式加载更大量的DADA-AuNP,并显示出更好的可感知颜色。这项工作证明了一种有前途的纸质比色生物传感器,可用于轻松快速地检测细菌。
    The monitoring of foodborne bacterial contamination requires simple and convenient biosensors. This work describes a novel paper-based colorimetric biosensor for the rapid and sensitive bacteria detection. The biosensor was constructed via the encapsulation of D-alanyl-D-alanine capped gold nanoparticles (DADA-AuNPs) in a modified paper that was fabricated by the freeze-drying of TEMPO-oxidized cellulose nanofibers/cationic guar gum composite hydrogel-modified filter paper. The results indicated that the size of DADA-AuNPs largely determined the color of their aqueous system and they exhibited light red to dark red as their size increased from around 6 to 36 nm. All these different sized DADA-AuNPs turned into colorless when encountered with either S. aureus or E. coli. In particular, the smaller the DADA-AuNPs size, the faster the discoloration. The encapsulation of DADA-AuNPs into modified paper negligibly changed their responsiveness towards bacteria. In comparison to the original filter paper and oven-dried hydrogel-modified filter paper, the freeze-dried hydrogel-modified paper was demonstrated to be a better substrate for the encapsulation of DADA-AuNPs since they could be loaded with a larger amount of DADA-AuNPs in a faster way and showed a better perceivable color. This work demonstrated a promising paper-based colorimetric biosensor for the facile and rapid detection of bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    抗生素的持续和不适当使用正在导致全球范围内的抗生素耐药性(AMR)。因此,如果不使用最后的抗生素,常见的细菌感染变得越来越难以治疗。这就需要一种必须确认感染是细菌的情况,在用抗菌药物推测治疗之前。细菌检测的常规方法是基于培养的,需要24至96小时之间的任何地方,需要具有库和训练有素的操作员的复杂分子分析设备。对于发展中国家或欠发达国家的资源有限的社区医疗保健机构来说,这些都是困难的命题。定制,便宜,因此,正在研究和开发即时(PoC)生物传感器,以快速检测细菌病原体。一次性传感器基板的开发和优化是开发此类PoC系统的第一步和关键步骤。基板应有利于容易的电荷转移,高的表面体积比,通过各种生物共轭化学来调整,保持生物识别元件的完整性,但要便宜。因此,需要彻底研究这种传感器衬底。Further,如果这样的系统是一次性的,他们将获得对生物污染的免疫力。本文讨论了一些潜在的一次性电化学传感器基板,用于检测环境和医疗保健应用中的细菌。这些技术在帮助减少细菌感染和检查AMR方面具有巨大潜力。这可以帮助挽救死于细菌感染的人的生命,以及改善低收入和中等收入国家人民的整体生活质量。
    Persistent and inappropriate use of antibiotics is causing rife antimicrobial resistance (AMR) worldwide. Common bacterial infections are thus becoming increasingly difficult to treat without the use of last resort antibiotics. This has necessitated a situation where it is imperative to confirm the infection to be bacterial, before treating it with antimicrobial speculatively. Conventional methods of bacteria detection are either culture based which take anywhere between 24 and 96 hor require sophisticated molecular analysis equipment with libraries and trained operators. These are difficult propositions for resource limited community healthcare setups of developing or less developed countries. Customized, inexpensive, point-of-care (PoC) biosensors are thus being researched and developed for rapid detection of bacterial pathogens. The development and optimization of disposable sensor substrates is the first and crucial step in development of such PoC systems. The substrates should facilitate easy charge transfer, a high surface to volume ratio, be tailorable by the various bio-conjugation chemistries, preserve the integrity of the biorecognition element, yet be inexpensive. Such sensor substrates thus need to be thoroughly investigated. Further, if such systems were made disposable, they would attain immunity to biofouling. This article discusses a few potential disposable electrochemical sensor substrates deployed for detection of bacteria for environmental and healthcare applications. The technologies have significant potential in helping reduce bacterial infections and checking AMR. This could help save lives of people succumbing to bacterial infections, as well as improve the overall quality of lives of people in low- and middle-income countries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    准确有效的检测对细菌感染和污染至关重要。新型生物传感器,检测细菌生物制品并将其转化为可测量的信号,正在吸引注意力。我们开发了一种人工智能(AI)辅助的基于智能手机的比色生物传感器,用于可视化,快速,通过测量细菌分泌的透明质酸酶(HAase)来敏感地检测病原菌。生物传感器由作为生物反应器的负载氯酚红-β-D-吡喃半乳糖苷(CPRG)的透明质酸(HA)水凝胶和作为信号发生器的负载β-半乳糖苷酶(β-gal)的琼脂水凝胶组成。HAase降解生物反应器,随后决定CPRG的释放,这可以进一步与β-gal反应以产生信号颜色。利用自主开发的YOLOv5算法对智能手机获取的信号颜色进行分析。生物传感器可以在60分钟内提供具有10CFU/mL的超低检测限(LoD)的报告,并区分革兰氏阳性(G)和革兰氏阴性(G-)细菌。所提出的生物传感器已成功应用于各个领域,特别是以100%的灵敏度评估临床样本中的感染。我们相信设计的生物传感器有可能代表一个新的“保证”细菌检测的范例,适用于广泛的生物医学用途。
    Accurate and effective detection is essential to against bacterial infection and contamination. Novel biosensors, which detect bacterial bioproducts and convert them into measurable signals, are attracting attention. We developed an artificial intelligence (AI)-assisted smartphone-based colorimetric biosensor for the visualized, rapid, sensitive detection of pathogenic bacteria by measuring the bacteria secreted hyaluronidase (HAase). The biosensor consists of the chlorophenol red-β-D-galactopyranoside (CPRG)-loaded hyaluronic acid (HA) hydrogel as the bioreactor and the β-galactosidase (β-gal)-loaded agar hydrogel as the signal generator. The HAase degrades the bioreactor and subsequently determines the release of CPRG, which could further react with β-gal to generate signal colors. The self-developed YOLOv5 algorithm was utilized to analyze the signal colors acquired by smartphone. The biosensor can provide a report within 60 min with an ultra-low limit of detection (LoD) of 10 CFU/mL and differentiate between gram-positive (G+) and gram-negative (G-) bacteria. The proposed biosensor was successfully applied in various areas, especially the evaluation of infections in clinical samples with 100% sensitivity. We believe the designed biosensor has the potential to represent a new paradigm of \"ASSURED\" bacterial detection, applicable for broad biomedical uses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞裂解酶的细胞壁肽聚糖结合域(CBD),包括细菌素,自溶素和噬菌体内溶素,实现高度选择性的细菌结合,因此,具有作为无损细菌检测的生物识别分子的潜力。这里,提出了一种自互补分裂荧光蛋白(FP)复合物的新设计,其中与特定CBD((FP-CBD)n)融合的多聚FP链在细胞内组装,通过增强金黄色葡萄球菌或炭疽芽孢杆菌结合时产生的信号来提高灵敏度。流式细胞术显示细胞表面上的荧光随着FP化学计量增加而增强,表面等离子体共振揭示了对分离的肽聚糖的纳摩尔结合亲和力。通过使用CBD模块化和连接酶检测方式的能力,证明了这些复合物的功能广度。辣根过氧化物酶偶联(FP-CBD)n复合物产生催化扩增,随着放大程度随FP长度的增加而增加,达到103个细胞/液滴的检测极限(LOD)(约0.1ng。金黄色葡萄球菌或炭疽芽孢杆菌)在聚苯乙烯表面上的15min内。这些融合蛋白可以是多重的,用于同时检测。多聚体分裂FP-CBD融合体能够用作具有增强信号的生物识别分子,用于细菌生物传感平台。
    Cell wall peptidoglycan binding domains (CBDs) of cell lytic enzymes, including bacteriocins, autolysins and bacteriophage endolysins, enable highly selective bacterial binding, and thus, have potential as biorecognition molecules for nondestructive bacterial detection. Here, a novel design for a self-complementing split fluorescent protein (FP) complex is proposed, where a multimeric FP chain fused with specific CBDs ((FP-CBD)n) is assembled inside the cell, to improve sensitivity by enhancing the signal generated upon Staphylococcus aureus or Bacillus anthracis binding. Flow cytometry shows enhanced fluorescence on the cell surface with increasing FP stoichiometry and surface plasmon resonance reveals nanomolar binding affinity to isolated peptidoglycan. The breadth of function of these complexes is demonstrated through the use of CBD modularity and the ability to attach enzymatic detection modalities. Horseradish peroxidase-coupled (FP-CBD)n complexes generate a catalytic amplification, with the degree of amplification increasing as a function of FP length, reaching a limit of detection (LOD) of 103 cells/droplet (approximately 0.1 ng S. aureus or B. anthracis) within 15 min on a polystyrene surface. These fusion proteins can be multiplexed for simultaneous detection. Multimeric split FP-CBD fusions enable use as a biorecognition molecule with enhanced signal for use in bacterial biosensing platforms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    单个细菌细胞的无标签测量和分析对于食品安全监测和微生物疾病诊断至关重要。我们报告了一种带有微带传感装置的微波流式细胞仪传感器,该传感器具有降低的通道高度,用于细菌细胞测量。用传感器在500MHz和8GHz之间的频率下测量大肠杆菌B和大肠杆菌K-12。结果显示大肠杆菌细胞的微波特性是频率依赖性的。开发了LightGBM模型,以在1GHz下以0.96的高精度对细胞类型进行分类。因此,该传感器提供了一种有前途的无标记方法来快速检测和区分细菌细胞。然而,该方法需要通过全面测量不同类型的细胞并通过改进的机器学习技术来证明准确的细胞分类来进一步发展。
    Label-free measurement and analysis of single bacterial cells are essential for food safety monitoring and microbial disease diagnosis. We report a microwave flow cytometric sensor with a microstrip sensing device with reduced channel height for bacterial cell measurement. Escherichia coli B and Escherichia coli K-12 were measured with the sensor at frequencies between 500 MHz and 8 GHz. The results show microwave properties of E. coli cells are frequency-dependent. A LightGBM model was developed to classify cell types at a high accuracy of 0.96 at 1 GHz. Thus, the sensor provides a promising label-free method to rapidly detect and differentiate bacterial cells. Nevertheless, the method needs to be further developed by comprehensively measuring different types of cells and demonstrating accurate cell classification with improved machine-learning techniques.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    表面增强拉曼光谱(SERS)方法正在出现用于细菌分析,从而可以根据其生化组成(无标记)或借助化学标记来测量细菌细胞以增强SERS信号。结合显微镜,SERS显微镜能够基于特定的分光光度峰对细菌群体进行整体成像。这里,我们比较了无标记和基于标记的方法来研究用作SERS成像分析模型细菌的大肠杆菌O157:H7。在这项研究中,金(Au)纳米颗粒被用来增强拉曼散射,3-巯基苯基硼酸被用作模型化学标记,用于与无标记条件进行比较。结果表明,细菌细胞的SERS图像在精度上产生了可测量的差异,取决于化学标签的应用。化学标记能够以单细胞精度对整个细菌群体进行SERS成像。涂有标签的细菌也更容易使用高倍率光学显微镜聚焦,不需要浸油。单细胞的无标记分析在地理精度上较低,但提供了以很高的准确性研究细菌细胞的自然生物化学的机会。无标记细菌细胞成分的SERS分析在时间依赖性的基础上在体外得到了决定性的改善。当基于SERS进行生化分析或表征细菌细胞时,该概念可以用作重要的基准。电子显微照片证明,化学标记可用于增加纳米颗粒与细菌细胞的接触,并减少导致SERS光谱中背景噪声的游离纳米颗粒。我们还证明了使用3-巯基苯基硼酸和碘化丙啶通过同时从这两个化学标签收集数据来区分活的和死的细菌。SERS细菌分析的无标记方法更适合于生化表征,并且当考虑群体中的单个细胞时,基于标记的方法更适合。
    Surface-enhanced Raman spectroscopic (SERS) approaches are emerging for bacteria analysis whereby bacteria cells can be measured based on their biochemical composition (label-free) or with the aid of a chemical label to enhance the SERS signal. Combining a microscope, SERS microscopy is capable of imaging bacteria populations en masse based on specific spectrophotometric peaks. Here, we compared the label-free and label-based approaches to study Escherichia coli O157:H7 that was utilized as a model bacterium for SERS imaging analyses. Gold (Au) nanoparticles were utilized to enhance Raman scattering during this study and 3-mercaptophenylboronic acid was utilized as a model chemical label for comparison against label-free conditions. The result shows that SERS images of bacteria cells yielded measurable differences in precision, depending on the application of chemical labels. Chemical labels enabled SERS imaging of whole bacteria populations with single-cell precision. Bacteria coated with labels were also easier to bring into focus using high-magnification optical microscopy, without the need for immersion oil. Label-free analyses of single-cells were lower in geographic precision but provided opportunities to study the natural biochemistry of bacteria cells with strong accuracy. SERS analyses of label-free bacteria cell components were conclusively improved in vitro on a time-dependent basis. This concept can serve as an important benchmark when biochemically profiling or characterizing bacteria cells based on SERS. Electron micrographs proved that chemical labels can be utilized to increase nanoparticle contact with bacteria cells and reduce free nanoparticles that contribute to background noise in SERS spectra. We also demonstrate the use of both 3-mercaptophenylboronic acid and propidium iodide to discriminate live and dead bacteria through the simultaneous collection of data from these two chemical labels. Label-free approaches to SERS bacteria analyses are better suited for biochemical characterization and label-based approaches are better suited when accounting for individual cells among a population.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    快速抗生素敏感性测试(AST)的有效工具对于适当使用抗生素至关重要。尤其是粘菌素,现在通常被认为是对耐药性极强的革兰氏阴性菌的最后手段。这里,我们开发了一种快速的,基于微流体的简易小型化粘菌素敏感性测定,这允许细菌样品的培养和高通量分析。具体来说,一个简单的微流控平台,可以很容易地操作被设计成封装细菌在纳米升的液滴,并在2小时内进行快速和自动化的细菌生长检测,使用标准化样本。与基于荧光的分析相比,分隔样品的直接亮场成像被证明是一种更快,更准确的检测方法。实施了一种深度学习驱动的方法,用于灵敏检测液滴中几种菌株的生长。此处开发的DropDeepLAST方法(基于液滴和深度学习的AST方法)允许确定21种快速生长的肠杆菌的粘菌素敏感性曲线(E.大肠杆菌和肺炎克雷伯菌),包括具有不同抗性机制的临床分离株,显示与同时进行的参考肉汤微量稀释(BMD)方法100%的分类一致性。芯片上尿液样品中细菌的直接AST也在2小时内提供了准确的结果,无需复杂的样品制备程序。这种方法可以很容易地在临床微生物学实验室中实现,并有可能适应各种抗生素,尤其是对多药耐药菌株感染患者的最后一线抗生素进行优化治疗。
    Efficient tools for rapid antibiotic susceptibility testing (AST) are crucial for appropriate use of antibiotics, especially colistin, which is now often considered a last resort therapy with extremely drug resistant Gram-negative bacteria. Here, we developed a rapid, easy and miniaturized colistin susceptibility assay based on microfluidics, which allows for culture and high-throughput analysis of bacterial samples. Specifically, a simple microfluidic platform that can easily be operated was designed to encapsulate bacteria in nanoliter droplets and perform a fast and automated bacterial growth detection in 2 h, using standardized samples. Direct bright-field imaging of compartmentalized samples proved to be a faster and more accurate detection method as compared to fluorescence-based analysis. A deep learning powered approach was implemented for the sensitive detection of the growth of several strains in droplets. The DropDeepL AST method (Droplet and Deep learning-based method for AST) developed here allowed the determination of the colistin susceptibility profiles of 21 fast-growing Enterobacterales (E. coli and K. pneumoniae), including clinical isolates with different resistance mechanisms, showing 100 % categorical agreement with the reference broth microdilution (BMD) method performed simultaneously. Direct AST of bacteria in urine samples on chip also provided accurate results in 2 h, without the need of complex sample preparation procedures. This method can easily be implemented in clinical microbiology laboratories, and has the potential to be adapted to a variety of antibiotics, especially for last-line antibiotics to optimize treatment of patients infected with multi-drug resistant strains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细菌感染,对普通抗生素的耐药性越来越强,构成全球卫生挑战。传统的诊断通常依赖于慢细胞培养。导致加速抗生素耐药性的经验性治疗。我们提出了一种新颖的大容量显微镜(LVM)系统,用于快速,现场护理细菌检测。这个系统,使用低放大倍数(1-2倍),可视化足够的样品体积,消除了基于文化的丰富需求。采用深度神经网络,与传统的机器学习方法相比,我们的模型在检测尿路致病性大肠杆菌方面具有更高的准确性。未来的努力将集中在丰富我们的数据集与混合样本和更广泛的尿路病原体,旨在将我们的模型扩展到临床样本。
    Bacterial infections, increasingly resistant to common antibiotics, pose a global health challenge. Traditional diagnostics often depend on slow cell culturing, leading to empirical treatments that accelerate antibiotic resistance. We present a novel large-volume microscopy (LVM) system for rapid, point-of-care bacterial detection. This system, using low magnification (1-2×), visualizes sufficient sample volumes, eliminating the need for culture-based enrichment. Employing deep neural networks, our model demonstrates superior accuracy in detecting uropathogenic Escherichia coli compared to traditional machine learning methods. Future endeavors will focus on enriching our datasets with mixed samples and a broader spectrum of uropathogens, aiming to extend the applicability of our model to clinical samples.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这份报告中,使用七种不同分离物的无细胞提取物合成金纳米颗粒(GNPS),即,产气假单胞菌CEBP2,假单胞菌。CEBP1,假单胞菌,肌动蛋白baumaniCEBS1,Cuprividussp。CEB3、藤黄微球菌CUB12和潘多拉菌。CUB2S.光谱(UV-vis,FTIR,DLS,XRD,EDS)和微观(FESEM,TEM)结果证实,在具有还原和自稳定活性的生物分子存在下,Au3还原为Au0。在这种绿色合成方法中,生物合成GNPS的平均粒径可能会有所不同(4-60nm),具体取决于细菌种类,培养基的pH值,孵化时间,和温度。在这项研究中,GSH修饰的BSGNP(Au-GSH)已显示出抗微生物活性,对革兰氏阳性细菌具有更好的稳定性。溶菌酶与Au-GSH(lyso@Au-GSH)缀合后,抑制区从12mm增强到23mm(Au-GSH)。TEM研究表明,球形GNP(16.65±2.84)与溶菌酶结合后,由于蛋白质冠的形成而变成花形GNP(22.22±3.12)。此外,将纳米生物缀合物(lyso@Au-GSH)与Nafion固定在玻璃碳电极上,以制造无标记阻抗生物传感器,该传感器对监测由于生物分子相互作用引起的换能器表面变化非常敏感。独特设计的生物传感器可以在3.0×101-3×1010cfumL-1的线性范围内选择性检测革兰氏阳性菌,RE<5%。所提出的最简单的生物传感器具有良好的重现性(RSD=3.1%)和优异的相关性(R2=0.999)与标准板计数方法,使其适用于监测生物流体中的革兰氏阳性细菌污染,食物,和环境样本。
    In this report, gold nanoparticles (GNPS) were synthesized using cell-free extracts of seven different isolates, namely, Pseudomonas aerogenosa CEBP2, Pseudomonas sp. CEBP1, Pseudomonas pseudoalcaligenes CEB1G, Acinetobactor baumani CEBS1, Cuprividus sp. CEB3, Micrococcus luteus CUB12, and Pandoraea sp. CUB2S. The spectroscopic (UV-vis, FTIR, DLS, XRD, EDS) and microscopic (FESEM, TEM) results confirm the reduction of Au3+ to Au0 in the presence of biomolecules having reducing as well as self-stabilizing activity. In this green synthesis approach, the average particle size of biosynthesized GNPS might vary (4-60 nm) depending on the bacterial species, pH of the media, incubation time, and temperature. In this study, GSH-modified BSGNPs (Au-GSH) have shown antimicrobial activity with better stability against Gram-positive bacteria. After conjugation of lysozyme with Au-GSH (lyso@Au-GSH), the zone of inhibition was enhanced from 12 to 23 mm (Au-GSH). The TEM study shows the spherical GNP (16.65 ± 2.84) turns into a flower-shaped GNP (22.22 ± 3.12) after conjugation with lysozyme due to the formation of the protein corona. Furthermore, the nanobioconjugate (lyso@Au-GSH) was immobilized with Nafion on a glassy carbon electrode to fabricate a label-free impedance biosensor that is highly sensitive to monitor changes in the transducer surface due to biomolecular interactions. The uniquely designed biosensor could selectively detect Gram-positive bacteria in the linear range of 3.0 × 101-3 × 1010 cfu mL-1 with RE <5%. The proposed simplest biosensor exhibited good reproducibility (RSD = 3.1%) and excellent correlation (R2 = 0.999) with the standard plate count method, making it suitable for monitoring Gram-positive bacterial contamination in biofluids, food, and environmental samples.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这项研究中,我们提出了猪免疫球蛋白G(IgG)功能化的Fe3O4(IgG-Fe3O4)的创新应用,专门设计用于靶向和捕获金黄色葡萄球菌(S.金黄色葡萄球菌)。此外,利用氨基苯基硼酸修饰的四苯基乙烯纳米颗粒(APBA-TPENP),通过与细菌胞外糖脂的相互作用建立三明治型双重识别系统。这种方法能够高灵敏度和精确地检测细菌的存在,检测限(LOD)达到5.0CFU/mL。具体来说,制备的APBA-TPENP在200µg/mL的浓度下在60分钟内实现了99.99%的细菌灭活。结果表明,APBA-TPENPs具有显著的活性氧(ROS)生产能力,可以攻击细菌细胞膜,导致细菌溶解和内容物泄漏,最终导致细菌死亡。此外,该材料在实际水样中仍显示出88.5%至93.5%的良好回收率,以及杀死所有微生物60分钟的良好杀菌效果。本研究为具体捕获方法的构建提供了新的策略和见解,检测,和金黄色葡萄球菌的失活。
    In this study, we proposed an innovative application of porcine immunoglobulin G (IgG)-functionalized Fe3O4 (IgG-Fe3O4) specifically designed to target and capture Staphylococcus aureus (S. aureus). In addition, aminophenylboronic acid-modified tetraphenylethylene nanoparticles (APBA-TPE NPs) were utilized, establishing a sandwich-type dual recognition system via interactions with the bacteria\'s extracellular glycolipids. This approach enables highly sensitive and precise detection of bacterial presence, with a limit of detection (LOD) reaching down to 5.0 CFU/mL. Specifically, the prepared APBA-TPE NPs achieved 99.99% bacterial inactivation within 60 min at a concentration of 200 µg/mL. The results showed that APBA-TPE NPs possess a remarkable capacity for reactive oxygen species (ROS) production, which could attack the bacterial cell membrane, leading to bacterial lysis and content leakage, and ultimately to bacterial death. Furthermore, the material still showed good recoveries ranging from 88.5% to 93.5% in actual water samples, as well as a favorable sterilizing effect of killing all microorganisms for 60 min. This research provides new strategies and insights into the construction of methods for the specific capture, detection, and inactivation of S. aureus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号