BNIP3

Bnip3
  • 文章类型: Journal Article
    必须仔细调节线粒体自噬,以确保细胞维持适当数量的功能性线粒体。SCFFBXL4泛素连接酶复合物通过控制BNIP3和NIX线粒体自噬受体的降解来抑制线粒体自噬,和FBXL4突变由于线粒体自噬升高而导致线粒体疾病。这里,我们发现线粒体磷酸酶PPTC7是SCFFBXL4介导的BNIP3和NIX破坏的重要辅因子,抑制稳态和诱导的线粒体自噬。PPTC7磷酸酶活性的破坏不会影响BNIP3和NIX的周转。相反,线粒体外膜上的PPTC7库充当将BNIP3和NIX连接到FBXL4的衔接子,促进这些线粒体自噬受体的周转。PPTC7响应于线粒体自噬诱导或FBXL4的不存在而在线粒体外膜上积累,表明具有减弱高水平的线粒体自噬的同质性反馈机制。我们绘制了PPTC7-BNIP3/NIX和PPTC7-FBXL4相互作用所需的关键残基,它们的破坏会干扰BNIP3/NIX降解和线粒体自噬抑制。总的来说,这些发现描述了限制BNIP3/NIX诱导的线粒体自噬的复杂调节机制.
    Mitophagy must be carefully regulated to ensure that cells maintain appropriate numbers of functional mitochondria. The SCFFBXL4 ubiquitin ligase complex suppresses mitophagy by controlling the degradation of BNIP3 and NIX mitophagy receptors, and FBXL4 mutations result in mitochondrial disease as a consequence of elevated mitophagy. Here, we reveal that the mitochondrial phosphatase PPTC7 is an essential cofactor for SCFFBXL4-mediated destruction of BNIP3 and NIX, suppressing both steady-state and induced mitophagy. Disruption of the phosphatase activity of PPTC7 does not influence BNIP3 and NIX turnover. Rather, a pool of PPTC7 on the mitochondrial outer membrane acts as an adaptor linking BNIP3 and NIX to FBXL4, facilitating the turnover of these mitophagy receptors. PPTC7 accumulates on the outer mitochondrial membrane in response to mitophagy induction or the absence of FBXL4, suggesting a homoeostatic feedback mechanism that attenuates high levels of mitophagy. We mapped critical residues required for PPTC7-BNIP3/NIX and PPTC7-FBXL4 interactions and their disruption interferes with both BNIP3/NIX degradation and mitophagy suppression. Collectively, these findings delineate a complex regulatory mechanism that restricts BNIP3/NIX-induced mitophagy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    顺铂(CDDP)是骨肉瘤(OS)患者常用的化疗药物,耐药性仍然是破坏治疗结果的主要障碍。这里,我们研究了FoxG1和BNIP3在OS细胞CDDP抵抗中的潜在参与。在CDDP敏感性和CDDP抗性OS肿瘤和细胞系中检测到FoxG1和BNIP3表达水平。通过透射电子显微镜分析观察线粒体自噬。在细胞和动物模型中检查了FoxG1过表达后OS细胞对CDDP的敏感性。我们发现FoxG1和BNIP3在CDDP抗性OS肿瘤样品和细胞系中显示出显著的下调。CDDP抗性OS肿瘤标本和细胞显示线粒体自噬受损。FoxG1过表达促进BNIP3表达,CDDP抗性OS细胞中增强的线粒体自噬,并在体外和体内使耐药细胞对CDDP治疗重新敏感。我们的数据强调了FoxG1/BNIP3轴在调节线粒体自噬和决定OS细胞CDDP抗性中的作用,提示靶向FoxG1/BNIP3依赖性线粒体自噬作为克服OS中CDDP耐药的潜在策略。
    Cisplatin (CDDP) is a commonly used chemotherapeutic for osteosarcoma (OS) patients, and drug resistance remains as a major hurdle to undermine the treatment outcome. Here, we investigated the potential involvement of FoxG1 and BNIP3 in CDDP resistance of OS cells. FoxG1 and BNIP3 expression levels were detected in the CDDP-sensitive and CDDP-resistant OS tumors and cell lines. Mitophagy was observed through transmission electron microscope analysis. The sensitivity to CDDP in OS cells upon FoxG1 overexpression was examined in cell and animal models. We found that FoxG1 and BNIP3 showed significant downregulation in the CDDP-resistant OS tumor samples and cell lines. CDDP-resistant OS tumor specimens and cells displayed impaired mitophagy. FoxG1 overexpression promoted BNIP3 expression, enhanced mitophagy in CDDP-resistant OS cells, and resensitized the resistant cells to CDDP treatment in vitro and in vivo. Our data highlighted the role of the FoxG1/BNIP3 axis in regulating mitophagy and dictating CDDP resistance in OS cells, suggesting targeting FoxG1/BNIP3-dependent mitophagy as a potential strategy to overcome CDDP resistance in OS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    缺氧诱导的炎症和细胞凋亡是中暑急性肾损伤(HS-AKI)的重要病理生理特征。缺氧诱导因子(HIF)是调节细胞适应缺氧的关键蛋白。HIF-脯氨酸酰羟化酶抑制剂(HIF-PHI)稳定HIF以增加细胞对缺氧的适应。在这里,我们报道HIF-PHI预处理显著改善肾功能,增强的耐热性,并提高了HS背景下小鼠的存活率。此外,HIF-PHI可以减轻HS诱导的线粒体损伤,炎症,在体外和体内增强线粒体自噬和肾小管上皮细胞(RTECs)的凋亡。相比之下,线粒体自噬抑制剂Mdivi-1,3-MA,和Baf-A1逆转HIF-PHI的肾脏保护作用。机械上,HIF-PHI通过增强Bcl-2腺病毒E1819-kDa相互作用蛋白3(BNIP3)介导的线粒体自噬来保护RTECs免受炎症和凋亡,而BNIP3的遗传消融减弱了HIF-PHI诱导的线粒体自噬并消除了HIF-PHI介导的肾保护作用。因此,我们的结果表明,HIF-PHI通过上调BNIP3介导的线粒体自噬来改善HS诱导的RTECs炎症和凋亡,从而保护肾功能,提示HIF-PHI是治疗HS-AKI的有前途的治疗剂。
    Hypoxia-induced inflammation and apoptosis are important pathophysiological features of heat stroke-induced acute kidney injury (HS-AKI). Hypoxia-inducible factor (HIF) is a key protein that regulates cell adaptation to hypoxia. HIF-prolyl hydroxylase inhibitor (HIF-PHI) stabilizes HIF to increase cell adaptation to hypoxia. Herein, we reported that HIF-PHI pretreatment significantly improved renal function, enhanced thermotolerance, and increased the survival rate of mice in the context of HS. Moreover, HIF-PHI could alleviate HS-induced mitochondrial damage, inflammation, and apoptosis in renal tubular epithelial cells (RTECs) by enhancing mitophagy in vitro and in vivo. By contrast, mitophagy inhibitors Mdivi-1, 3-MA, and Baf-A1 reversed the renoprotective effects of HIF-PHI. Mechanistically, HIF-PHI protects RTECs from inflammation and apoptosis by enhancing Bcl-2 adenovirus E18 19-kDa-interacting protein 3 (BNIP3)-mediated mitophagy, while genetic ablation of BNIP3 attenuated HIF-PHI-induced mitophagy and abolished HIF-PHI-mediated renal protection. Thus, our results indicated that HIF-PHI protects renal function by upregulating BNIP3-mediated mitophagy to improve HS-induced inflammation and apoptosis of RTECs, suggesting HIF-PHI as a promising therapeutic agent to treat HS-AKI.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    线粒体自噬是自噬的选择性形式,其允许去除功能失调或过量的线粒体。这是对生理应激源的适应性反应,如缺氧,营养剥夺,或DNA损伤。线粒体自噬由特定的线粒体外膜受体促进,其中包括BNIP3和BNIP3L。线粒体自噬在癌症中的作用正在被广泛研究,更具体地说,在维持癌症干细胞(CSC)特性方面,比如自我更新。鉴于CSC是导致治疗失败和转移能力的原因,靶向线粒体自噬可能是消除CSC的一种有趣方法.在这里,我们描述了一种新的模型系统,以丰富具有高基础水平线粒体自噬的癌细胞亚群,基于BNIP3和BNIP3L的功能转录活性。简而言之,我们使用BNIP3(L)-启动子-eGFP-报告系统通过流式细胞术(FACS)分离具有高BNIP3/BNIP3L转录活性的癌细胞。该模型通过使用互补溶酶体和线粒体自噬特异性探针进行验证,以及线粒体靶向的红色荧光蛋白(RFP),即mt-Keima。高BNIP3/BNIP3L转录活性伴随着i)BNIP3/BNIP3L蛋白水平的增加,ii)溶酶体质量,和iii)基础线粒体自噬活性。此外,BNIP3/BNIP3L转录活性增加的癌细胞表现出CSC特征,如更大的乳腺球形成能力和高CD44水平。为了进一步探索模型,我们还分析了MCF7和MDA-MB-231乳腺癌细胞系的其他干性特征,直接证明BNIP3(L)-高细胞代谢活性更高,增殖性,迁徙,和抗药性,抗氧化能力提高。因此,高水平的基底线粒体自噬似乎增强了CSC的功能。
    Mitophagy is a selective form of autophagy which permits the removal of dysfunctional or excess mitochondria. This occurs as an adaptative response to physiological stressors, such as hypoxia, nutrient deprivation, or DNA damage. Mitophagy is promoted by specific mitochondrial outer membrane receptors, among which are BNIP3 and BNIP3L. The role of mitophagy in cancer is being widely studied, and more specifically in the maintenance of cancer stem cell (CSC) properties, such as self-renewal. Given that CSCs are responsible for treatment failure and metastatic capacity, targeting mitophagy could be an interesting approach for CSC elimination. Herein, we describe a new model system to enrich sub-populations of cancer cells with high basal levels of mitophagy, based on the functional transcriptional activity of BNIP3 and BNIP3L. Briefly, we employed a BNIP3(L)-promoter-eGFP-reporter system to isolate cancer cells with high BNIP3/BNIP3L transcriptional activity by flow cytometry (FACS). The model was validated by using complementary lysosomal and mitophagy-specific probes, as well as the mitochondrially-targeted red fluorescent protein (RFP), namely mt-Keima. High BNIP3/BNIP3L transcriptional activity was accompanied by increases in i) BNIP3/BNIP3L protein levels, ii) lysosomal mass, and iii) basal mitophagy activity. Furthermore, cancer cells with increased BNIP3/BNIP3L transcriptional activity exhibited CSC features, such as greater mammosphere-forming ability and high CD44 levels. To further explore the model, we also analysed other stemness characteristics in MCF7 and MDA-MB-231 breast cancer cell lines, directly demonstrating that BNIP3(L)-high cells were more metabolically active, proliferative, migratory, and drug-resistant, with elevated anti-oxidant capacity. Therefore, high levels of basal mitophagy appear to enhance CSC features.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自噬/线粒体自噬失调是缺血性心脏损伤的主要原因之一。糖原合成酶激酶3α(GSK-3α)已被证明在心脏病的病理生理学中起着至关重要的作用。然而,GSK-3α在心脏线粒体自噬中的确切作用尚不清楚。在这里,我们通过在急性缺氧条件下使用AC16人心肌细胞研究了GSK-3α在心脏线粒体自噬中的作用。我们观察到,缺氧后AC16心肌细胞中GSK-3α功能的获得深刻诱导了线粒体自噬。此外,GSK-3α过表达导致心肌细胞中ROS生成增加和线粒体功能障碍,伴随着缺氧下mt-mKeima强度增加的线粒体自噬增强。机械上,我们发现GSK-3α通过上调BNIP3促进线粒体自噬,这是由GSK-3α介导的缺氧后心肌细胞中HIF-1α和FOXO3a表达增加引起的。此外,GSK-3α显示与BNIP3的物理相互作用,在缺氧下观察到抑制PINK1和Parkin对线粒体的募集。一起来看,我们在人心肌细胞中发现了一种新的线粒体自噬机制。GSK-3α促进线粒体功能障碍并调节FOXO3a介导的BNIP3在心肌细胞中的过表达以促进缺氧后的线粒体自噬。GSK-3α和BNIP3之间的相互作用表明GSK-3α在BNIP3募集到线粒体膜中的作用,在线粒体膜中它增强了应激心肌细胞中的线粒体自噬,而与PINK1/Parkin无关。
    Dysregulated autophagy/mitophagy is one of the major causes of cardiac injury in ischemic conditions. Glycogen synthase kinase-3alpha (GSK-3α) has been shown to play a crucial role in the pathophysiology of cardiac diseases. However, the precise role of GSK-3α in cardiac mitophagy remains unknown. Herein, we investigated the role of GSK-3α in cardiac mitophagy by employing AC16 human cardiomyocytes under the condition of acute hypoxia. We observed that the gain-of-GSK-3α function profoundly induced mitophagy in the AC16 cardiomyocytes post-hypoxia. Moreover, GSK-3α overexpression led to increased ROS generation and mitochondrial dysfunction in cardiomyocytes, accompanied by enhanced mitophagy displayed by increased mt-mKeima intensity under hypoxia. Mechanistically, we identified that GSK-3α promotes mitophagy through upregulation of BNIP3, caused by GSK-3α-mediated increase in expression of HIF-1α and FOXO3a in cardiomyocytes post-hypoxia. Moreover, GSK-3α displayed a physical interaction with BNIP3 and, inhibited PINK1 and Parkin recruitment to mitochondria was observed specifically under hypoxia. Taken together, we identified a novel mechanism of mitophagy in human cardiomyocytes. GSK-3α promotes mitochondrial dysfunction and regulates FOXO3a -mediated BNIP3 overexpression in cardiomyocytes to facilitate mitophagy following hypoxia. An interaction between GSK-3α and BNIP3 suggests a role of GSK-3α in BNIP3 recruitment to the mitochondrial membrane where it enhances mitophagy in stressed cardiomyocytes independent of the PINK1/Parkin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:阿霉素是一种强效的化疗药物,由于其潜在的心脏毒性,其使用受到限制。塞马鲁肽(SEMA),胰高血糖素样肽-1(GLP-1)的新型类似物,糖尿病的治疗受到了广泛的关注。然而,越来越多的证据强调了其对心脏功能的潜在治疗益处.因此,本研究的目的是研究司马鲁肽改善阿霉素诱导的心脏毒性的疗效.
    结果:阿霉素诱导的心脏毒性是研究心功能的既定模型。通过经胸超声心动图和有创血流动力学监测研究心功能。结果表明,司马鲁肽可显着改善阿霉素引起的心功能不全。RNA测序表明,Bnip3是损害司马鲁肽在阿霉素诱导的心脏毒性中的保护作用的候选基因。为了确定BNIP3对塞马鲁肽在阿霉素诱导的心脏毒性中的作用,将具有表达心肌肌钙蛋白T(cTnT)启动子的腺相关病毒血清型9(AAV9)的BNIP3注射到C57/BL6J小鼠的尾静脉中,以特别在心脏中过表达BNIP3。BNIP3的过表达阻止了司马鲁肽引起的心脏功能的改善。体外实验表明,司马鲁肽,通过PI3K/AKT途径,线粒体中BNIP3的表达降低,改善线粒体功能。
    结论:塞马鲁肽通过PI3K/AKT通路改善阿霉素诱导的线粒体和心功能障碍,通过减少线粒体中的BNIP3表达。线粒体功能的改善减少了阿霉素介导的心脏损伤并改善了心脏功能。因此,司马鲁肽是一种潜在的减少阿霉素引起的急性心脏毒性的疗法。
    OBJECTIVE: Doxorubicin is a powerful chemotherapeutic agent for cancer, whose use is limited due to its potential cardiotoxicity. Semaglutide (SEMA), a novel analog of glucagon-like peptide-1 (GLP-1), has received widespread attention for the treatment of diabetes. However, increasing evidence has highlighted its potential therapeutic benefits on cardiac function. Therefore, the objective of this study was to examine the efficacy of semaglutide in ameliorating doxorubicin-induced cardiotoxicity.
    RESULTS: Doxorubicin-induced cardiotoxicity is an established model to study cardiac function. Cardiac function was studied by transthoracic echocardiography and invasive hemodynamic monitoring. The results showed that semaglutide significantly ameliorated doxorubicin-induced cardiac dysfunction. RNA sequencing suggested that Bnip3 is the candidate gene that impaired the protective effect of semaglutide in doxorubicin-induced cardiotoxicity. To determine the role of BNIP3 on the effect of semaglutide in doxorubicin-induced cardiotoxicity, BNIP3 with adeno-associated virus serotype 9 (AAV9) expressing cardiac troponin T (cTnT) promoter was injected into tail vein of C57/BL6J mice to overexpress BNIP3, specifically in the heart. Overexpression of BNIP3 prevented the improvement in cardiac function caused by semaglutide. In vitro experiments showed that semaglutide, via PI3K/AKT pathway, reduced BNIP3 expression in the mitochondria, improving mitochondrial function.
    CONCLUSIONS: Semaglutide ameliorates doxorubicin-induced mitochondrial and cardiac dysfunction via PI3K/AKT pathway, by reducing BNIP3 expression in mitochondria. The improvement in mitochondrial function reduces doxorubicin-mediated cardiac injury and improves cardiac function. Therefore, semaglutide is a potential therapy to reduce doxorubicin-induced acute cardiotoxicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肝细胞癌(HCC)是最常见的肿瘤类型之一,仍然是主要的临床挑战。越来越多的证据表明,线粒体自噬抑制剂可以增强化疗对HCC的作用。然而,少数线粒体自噬抑制剂已被批准在人类临床使用。乙胺嘧啶(Pyr)用于治疗由原生动物寄生虫引起的感染。最近的研究报道,Pyr可能有益于各种肿瘤的治疗。然而,其作用机制仍未明确界定。这里,我们发现阻断线粒体自噬可使细胞对Pyr诱导的细胞凋亡敏感。机械上,Pyr通过抑制人肝癌细胞中的自噬体-溶酶体融合而有效诱导自噬体的积累。体外和体内研究表明,Pyr通过上调BNIP3来抑制突触体相关蛋白29(SNAP29)与囊泡相关膜蛋白8(VAMP8)的相互作用,从而阻断自噬体-溶酶体融合。此外,Pyr与索拉非尼(Sora)协同作用,在体外和体内诱导凋亡并抑制HCC增殖。Pyr增强HCC细胞对Sora的敏感性,一种常见的化疗药物,通过抑制线粒体自噬。因此,这些结果为Pyr的作用机制提供了新的见解,并暗示Pyr可能作为一种新型的线粒体自噬抑制剂被进一步开发。值得注意的是,Pyr和Sora联合治疗可能是恶性HCC的有希望的治疗方法。
    Hepatocellular carcinoma (HCC) is one of the most common tumor types and remains a major clinical challenge. Increasing evidence has revealed that mitophagy inhibitors can enhance the effect of chemotherapy on HCC. However, few mitophagy inhibitors have been approved for clinical use in humans. Pyrimethamine (Pyr) is used to treat infections caused by protozoan parasites. Recent studies have reported that Pyr may be beneficial in the treatment of various tumors. However, its mechanism of action is still not clearly defined. Here, we found that blocking mitophagy sensitized cells to Pyr-induced apoptosis. Mechanistically, Pyr potently induced the accumulation of autophagosomes by inhibiting autophagosome-lysosome fusion in human HCC cells. In vitro and in vivo studies revealed that Pyr blocked autophagosome-lysosome fusion by upregulating BNIP3 to inhibit synaptosomal-associated protein 29 (SNAP29)-vesicle-associated membrane protein 8 (VAMP8) interaction. Moreover, Pyr acted synergistically with sorafenib (Sora) to induce apoptosis and inhibit HCC proliferation in vitro and in vivo. Pyr enhances the sensitivity of HCC cells to Sora, a common chemotherapeutic, by inhibiting mitophagy. Thus, these results provide new insights into the mechanism of action of Pyr and imply that Pyr could potentially be further developed as a novel mitophagy inhibitor. Notably, Pyr and Sora combination therapy could be a promising treatment for malignant HCC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体自噬是一种细胞过程,能够选择性地降解受损的细胞,功能失调,或者多余的线粒体.在线粒体自噬期间,特定的蛋白质识别和标记线粒体降解。这些标记的线粒体被称为吞噬细胞的专门结构吞噬,然后成熟为自噬体/线粒体吞噬体。线粒体吞噬体随后将其线粒体货物运输到溶酶体,线粒体被分解和回收。虽然PINK1-PRKN依赖性线粒体自噬途径是众所周知的,线粒体自噬也可以独立于该途径发生。BNIP3和BNIP3L/NIX,线粒体外膜(OMM)上的旁系膜蛋白,作为泛素非依赖性线粒体自噬受体。历史上,BNIP3调节被认为主要通过HIF1A(缺氧诱导因子1亚基α)转录。然而,最近的工作揭示了一个重要的翻译后维度,强调泛素-蛋白酶体系统(UPS)在BNIP3调节中的重要作用。考虑到这些新兴的概念,我们的目的是对如何建立和维持BNIP3的稳态水平以及该调节如何控制潜在的细胞生理学进行统一的理解.
    Mitophagy is a cellular process that enables the selective degradation of damaged, dysfunctional, or superfluous mitochondria. During mitophagy, specific proteins recognize and tag mitochondria for degradation. These tagged mitochondria are engulfed by specialized structures called phagophores that then mature into autophagosomes/mitophagosomes. Mitophagosomes subsequently transport their mitochondrial cargo to lysosomes, where the mitochondria are broken down and recycled. While the PINK1-PRKN-dependent mitophagy pathway is well understood, mitophagy can also occur independently of this pathway. BNIP3 and BNIP3L/NIX, paralogous membrane proteins on the outer mitochondrial membrane (OMM), serve as ubiquitin-independent mitophagy receptors. Historically, BNIP3 regulation was thought to be primarily transcriptional through HIF1A (hypoxia inducible factor 1 subunit alpha). However, recent work has revealed a significant post-translational dimension, highlighting the strong role of the ubiquitin-proteasome system (UPS) in BNIP3 regulation. With these emerging concepts in mind, we aimed to develop a unified understanding of how steady-state levels of BNIP3 are established and maintained and how this regulation governs underlying cell physiology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:神经炎症是急性脑损伤和神经退行性疾病后神经精神功能障碍的原因。这项研究描述了缺氧诱导因子脯氨酸酰羟化酶(HIF-PHD)抑制剂FG-4592如何预防小胶质细胞中脂多糖(LPS)诱导的急性神经炎症。
    方法:通过碰撞诱导解离串联质谱法测定FG-4592在小鼠脑组织中的分布。通过免疫荧光分析海马中的小胶质细胞活化。此外,我们确定了HIF-1和核因子-κB(NF-κB)信号通路的激活,使用分子生物学技术的促炎反应。进行转录组测序和BNIP3沉默以探索FG-4592抗炎活性的信号通路和分子机制。
    结果:FG-4592被转运到脑组织中,LPS增加了其转运。FG-4592促进海马HIF-1α的表达并诱导下游基因转录。在LPS处理后,FG-4592的给药显著抑制海马中的小胶质细胞过度活化并降低促炎细胞因子水平。LPS诱导的炎症反应和NF-κB信号通路也被FG-4592预处理在小胶质细胞中下调。机械上,BV2细胞的转录组变化的维恩图分析鉴定出BNIP3是不同处理组之间共享和共同的差异表达基因。FG-4592显著上调小胶质细胞中BNIP3的蛋白水平。重要的是,BNIP3敲低加重了LPS刺激的炎症反应,并部分逆转了FG-4592对小鼠海马中小胶质细胞炎症信号和小胶质细胞活化的保护作用。
    结论:FG-4592通过促进小胶质细胞HIF-1/BNIP3信号通路减轻小鼠神经炎症。靶向HIF-PHD/HIF-1/BNIP3轴是开发抗神经炎症药物的有希望的策略。
    BACKGROUND: Neuroinflammation is responsible for neuropsychiatric dysfunction following acute brain injury and neurodegenerative diseases. This study describes how a hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) inhibitor FG-4592 prevents the lipopolysaccharide (LPS)-induced acute neuroinflammation in microglia.
    METHODS: The distribution of FG-4592 in mouse brain tissues was determined by collision-induced dissociation tandem mass spectrometry. Microglial activation in the hippocampus was analyzed by immunofluorescence. Moreover, we determined the activation of HIF-1 and nuclear factor-κB (NF-κB) signaling pathways, proinflammatory responses using molecular biological techniques. Transcriptome sequencing and BNIP3 silencing were conducted to explore signaling pathway and molecular mechanisms underlying FG-4592 anti-inflammatory activity.
    RESULTS: FG-4592 was transported into the brain tissues and LPS increased its transportation. FG-4592 promoted the expression of HIF-1α and induced the downstream gene transcription in the hippocampus. Administration with FG-4592 significantly inhibited microglial hyperactivation and decreased proinflammatory cytokine levels following LPS treatment in the hippocampus. The LPS-induced inflammatory responses and the NF-κB signaling pathway were also downregulated by FG-4592 pretreatment in microglial cells. Mechanistically, Venn diagram analysis of transcriptomic changes of BV2 cells identified that BNIP3 was a shared and common differentially expressed gene among different treatment groups. FG-4592 markedly upregulated the protein levels of BNIP3 in microglia. Importantly, BNIP3 knockdown aggravated the LPS-stimulated inflammatory responses and partially reversed the protection of FG-4592 against microglial inflammatory signaling and microglial activation in the mouse hippocampus.
    CONCLUSIONS: FG-4592 alleviates neuroinflammation through facilitating microglial HIF-1/BNIP3 signaling pathway in mice. Targeting HIF-PHD/HIF-1/BNIP3 axis is a promising strategy for the development of anti-neuroinflammation drugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    线粒体自噬是一个关键的线粒体质量控制过程,它通过自噬-溶酶体系统选择性地去除功能失调或过量的线粒体。严格控制该过程以确保细胞和生理稳态。线粒体自噬不足会导致无法清除受损的线粒体,从而导致细胞变性。但适当抑制线粒体自噬以防止线粒体过度耗竭同样重要。这里,我们讨论了我们最近的发现,SKP1-CUL1-F-box(SCF)-FBXL4(F-box和富含亮氨酸的重复蛋白4)E3泛素连接酶定位于线粒体外膜,其中它组成介导BNIP3L/NIX和BNIP3线粒体自噬受体的泛素化和降解以抑制线粒体自噬。在线粒体DNA耗竭综合征13(MTDPS13)中,BNIP3L和BNIP3的翻译后调节被破坏,由FBXL4基因突变引起的多系统疾病,其特征是患者成纤维细胞中线粒体自噬和线粒体DNA/mtDNA消耗升高。我们的结果表明,线粒体自噬不仅受到特定条件的刺激,而且还通过SCF-FBXL4泛素连接酶介导的BNIP3L和BNIP3的连续降解而受到积极抑制。因此,预期阻止FBXL4介导的BNIP3L和BNIP3在特定线粒体上的周转的细胞条件或信号传导事件有助于它们的选择性去除。
    Mitophagy is a critical mitochondrial quality control process that selectively removes dysfunctional or excess mitochondria through the autophagy-lysosome system. The process is tightly controlled to ensure cellular and physiological homeostasis. Insufficient mitophagy can result in failure to remove damaged mitochondria and consequent cellular degeneration, but it is equally important to appropriately restrain mitophagy to prevent excessive mitochondrial depletion. Here, we discuss our recent discovery that the SKP1-CUL1-F-box (SCF)-FBXL4 (F-box and leucine-rich repeat protein 4) E3 ubiquitin ligase localizes to the mitochondrial outer membrane, where it constitutively mediates the ubiquitination and degradation of BNIP3L/NIX and BNIP3 mitophagy receptors to suppress mitophagy. The post-translational regulation of BNIP3L and BNIP3 is disrupted in mitochondrial DNA depletion syndrome 13 (MTDPS13), a multi-systemic disorder caused by mutations in the FBXL4 gene and characterized by elevated mitophagy and mitochondrial DNA/mtDNA depletion in patient fibroblasts. Our results demonstrate that mitophagy is not solely stimulated in response to specific conditions but is instead also actively suppressed through the continuous degradation of BNIP3L and BNIP3 mediated by the SCF-FBXL4 ubiquitin ligase. Thus, cellular conditions or signaling events that prevent the FBXL4-mediated turnover of BNIP3L and BNIP3 on specific mitochondria are expected to facilitate their selective removal.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号