BMM, Bone marrow-derived macrophage

  • 文章类型: Journal Article
    未经证实:干扰素基因(STING)/TANK结合激酶1(TBK1)途径的刺激因子在介导氧化/内质网(ER)应激期间的先天免疫和炎症反应中至关重要。然而,目前尚不清楚巨噬细胞硫氧还蛋白相互作用蛋白(TXNIP)是否在氧化应激/ER应激过程中调节TBK1功能和细胞死亡途径.
    未经证实:肝缺血/再灌注损伤(IRI)小鼠模型,原代肝细胞,和骨髓来源的巨噬细胞用于骨髓特异性TXNIP敲除(TXNIPM-KO)和TXNIP熟练(TXNIPFL/FL)小鼠。
    UNASSIGNED:TXNIPM-KO小鼠对缺血/再灌注(IR)应激诱导的肝损伤具有抗性,血清丙氨酸氨基转移酶(ALT)/天冬氨酸氨基转移酶(AST)水平降低,巨噬细胞/中性粒细胞浸润,和促炎介质与TXNIPFL/FL对照相比。IR应力增加TXNIP,p-STING,缺血肝脏中p-TBK1的表达。然而,TXNIPM-KO抑制STING,TBK1,干扰素调节因子3(IRF3),和NF-κB激活与干扰素-β(IFN-β)表达。有趣的是,TXNIPM-KO增强核因子(红系衍生的2)样2(NRF2)活性,抗氧化基因表达增加,并减少IR应激肝脏中巨噬细胞活性氧(ROS)的产生和肝细胞凋亡/坏死。机械上,巨噬细胞TXNIP缺乏促进圆柱瘤病(CYLD),与NADPH氧化酶4(NOX4)共定位并相互作用,以通过去泛素化NOX4来增强NRF2活性。巨噬细胞NRF2或其靶基因2'的破坏,5'寡腺苷酸合成酶样1(OASL1)增强RasGTP酶激活蛋白结合蛋白1(G3BP1)和TBK1介导的炎症反应。值得注意的是,巨噬细胞OASL1缺乏诱导肝细胞凋亡肽酶活化因子1(APAF1),细胞色素c,和caspase-9激活,导致caspase-3引发的凋亡和受体相互作用的丝氨酸/苏氨酸蛋白激酶3(RIPK3)介导的坏死性凋亡增加。
    未经证实:巨噬细胞TXNIP缺乏增强CYLD活性并激活NRF2-OASL1信号,控制IR应激诱导的肝损伤。受NRF2调控的靶基因OASL1对于调节STING介导的TBK1激活和Apaf1/细胞色素c/caspase-9触发的凋亡/坏死细胞死亡途径至关重要。我们的发现强调了巨噬细胞TXNIP介导的CYLD-NRF2-OASL1轴在应激诱导的肝脏炎症和细胞死亡中的新作用,暗示肝脏炎症性疾病的潜在治疗靶点。
    UNASSIGNED:由缺血和再灌注引起的肝脏炎症和损伤(缺乏血液流向肝脏组织,然后再供应血液)是肝移植后肝功能障碍和肝功能衰竭的重要原因,切除,失血性休克.在这里,我们揭示了在这种情况下导致肝脏炎症和细胞死亡的潜在机制,并且可能是应激诱导的肝脏炎症损伤的治疗靶标。
    UNASSIGNED: The stimulator of interferon genes (STING)/TANK-binding kinase 1 (TBK1) pathway is vital in mediating innate immune and inflammatory responses during oxidative/endoplasmic reticulum (ER) stress. However, it remains unknown whether macrophage thioredoxin-interacting protein (TXNIP) may regulate TBK1 function and cell death pathways during oxidative/ER stress.
    UNASSIGNED: A mouse model of hepatic ischaemia/reperfusion injury (IRI), the primary hepatocytes, and bone marrow-derived macrophages were used in the myeloid-specific TXNIP knockout (TXNIPM-KO) and TXNIP-proficient (TXNIPFL/FL) mice.
    UNASSIGNED: The TXNIPM-KO mice were resistant to ischaemia/reperfusion (IR) stress-induced liver damage with reduced serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) levels, macrophage/neutrophil infiltration, and pro-inflammatory mediators compared with the TXNIPFL/FL controls. IR stress increased TXNIP, p-STING, and p-TBK1 expression in ischaemic livers. However, TXNIPM-KO inhibited STING, TBK1, interferon regulatory factor 3 (IRF3), and NF-κB activation with interferon-β (IFN-β) expression. Interestingly, TXNIPM-KO augmented nuclear factor (erythroid-derived 2)-like 2 (NRF2) activity, increased antioxidant gene expression, and reduced macrophage reactive oxygen species (ROS) production and hepatic apoptosis/necroptosis in IR-stressed livers. Mechanistically, macrophage TXNIP deficiency promoted cylindromatosis (CYLD), which colocalised and interacted with NADPH oxidase 4 (NOX4) to enhance NRF2 activity by deubiquitinating NOX4. Disruption of macrophage NRF2 or its target gene 2\',5\' oligoadenylate synthetase-like 1 (OASL1) enhanced Ras GTPase-activating protein-binding protein 1 (G3BP1) and TBK1-mediated inflammatory response. Notably, macrophage OASL1 deficiency induced hepatocyte apoptotic peptidase activating factor 1 (APAF1), cytochrome c, and caspase-9 activation, leading to increased caspase-3-initiated apoptosis and receptor-interacting serine/threonine-protein kinase 3 (RIPK3)-mediated necroptosis.
    UNASSIGNED: Macrophage TXNIP deficiency enhances CYLD activity and activates the NRF2-OASL1 signalling, controlling IR stress-induced liver injury. The target gene OASL1 regulated by NRF2 is crucial for modulating STING-mediated TBK1 activation and Apaf1/cytochrome c/caspase-9-triggered apoptotic/necroptotic cell death pathway. Our findings underscore a novel role of macrophage TXNIP-mediated CYLD-NRF2-OASL1 axis in stress-induced liver inflammation and cell death, implying the potential therapeutic targets in liver inflammatory diseases.
    UNASSIGNED: Liver inflammation and injury induced by ischaemia and reperfusion (the absence of blood flow to the liver tissue followed by the resupply of blood) is a significant cause of hepatic dysfunction and failure following liver transplantation, resection, and haemorrhagic shock. Herein, we uncover an underlying mechanism that contributes to liver inflammation and cell death in this setting and could be a therapeutic target in stress-induced liver inflammatory injury.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    骨稳态失衡是骨质疏松的根本原因。然而,目前的治疗方法主要集中在合成代谢或分解代谢途径,通常无法扭转不平衡的骨骼代谢。在本文中,我们报道了SIRT-1激动剂介导的分子治疗策略,通过从矿物质包被的无细胞基质微粒局部持续释放SRT2104同时调节成骨和破骨细胞生成来逆转骨稳态失衡。利用其静电相互作用将SRT2104固定在矿物涂层(MAM/SRT)上,导致SIRT-1激动剂持续释放30天以上。MAM/SRT不只加强成骨分化和矿化,而且还通过整合多个重要的上游信号(β-catenin,FoxOs,Runx2、NFATc1等。)在体外。骨质疏松动物模型还验证了其加速骨质疏松性骨愈合并改善周围骨的骨整合。总的来说,我们的工作提出了一个有前景的策略,通过使用指定的小分子药物递送系统逆转骨稳态失衡来治疗骨质疏松性骨缺损。
    The imbalance of bone homeostasis is the root cause of osteoporosis. However current therapeutic approaches mainly focus on either anabolic or catabolic pathways, which often fail to turn the imbalanced bone metabolism around. Herein we reported that a SIRT-1 agonist mediated molecular therapeutic strategy to reverse the imbalance in bone homeostasis by simultaneously regulating osteogenesis and osteoclastogenesis via locally sustained release of SRT2104 from mineral coated acellular matrix microparticles. Immobilization of SRT2104 on mineral coating (MAM/SRT) harnessing their electrostatic interactions resulted in sustained release of SIRT-1 agonist for over 30 days. MAM/SRT not only enhanced osteogenic differentiation and mineralization, but also attenuated the formation and function of excessive osteoclasts via integrating multiple vital upstream signals (β-catenin, FoxOs, Runx2, NFATc1, etc.) in vitro. Osteoporosis animal model also validated that it accelerated osteoporotic bone healing and improved osseointegration of the surrounding bone. Overall, our work proposes a promising strategy to treat osteoporotic bone defects by reversing the imbalance in bone homeostasis using designated small molecule drug delivery systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号