BHLHA9

  • 文章类型: Case Reports
    伴有长骨缺陷(SHFLD)的手/足畸形(SHFM)是一种罕见的疾病,其特征是SHFM与通常累及胫骨的长骨畸形有关。它包括三种不同的类型;SHFLD1(MIM%119,100),SHFLD2(MIM%610,685)和SHFLD3(MIM#612576)。后者被证明是最常见的报道,在17p13.1p13.3基因座中有重复,并缩小到BHLHA9基因。这里,我们报告了一个有血缘关系的黎巴嫩家庭,有3名成员出现包括胫骨半角症在内的肢体异常.其中一名患者表现出额外的弯曲腓骨,另一名患者表现出双侧裂手。CGH阵列分析,然后进行RQ-PCR,使我们能够检测到染色体17p13.3短臂上的第一个纯合重复,包括BHLHA9基因并参与SHFLD3。有趣的是,一名具有纯合复制区域的患者,因此携带四个BHLHA9副本,表现为长骨缺陷,但没有SHFM。该家族中疾病的不完全外显率和可变表达率以及BHLHA9纯合复制的存在使遗传咨询极具挑战性,几乎不可能进行植入前遗传诊断。
    Split-hand/foot malformation (SHFM) with long-bone deficiency (SHFLD) is a rare condition characterized by SHFM associated with long-bone malformation usually involving the tibia. It includes three different types; SHFLD1 (MIM % 119,100), SHFLD2 (MIM % 610,685) and SHFLD3 (MIM # 612576). The latter was shown to be the most commonly reported with a duplication in the 17p13.1p13.3 locus that was narrowed down to the BHLHA9 gene. Here, we report a consanguineous Lebanese family with three members presenting with limb abnormalities including tibial hemimelia. One of these patients presented with additional bowing fibula and another with bilateral split hand. CGH array analysis followed by RQ-PCR allowed us to detect the first homozygous duplication on the short arm of chromosome 17p13.3 including the BHLHA9 gene and involved in SHFLD3. Interestingly, one patient with the homozygous duplicated region, carrying thus four BHLHA9 copies presented with long bone deficiency but no SHFM. The incomplete penetrance and the variable expressivity of the disease in this family as well as the presence of the BHLHA9 homozygous duplication rendered genetic counseling extremely challenging and preimplantation genetic diagnosis almost impossible.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    Split hand/foot malformation (SHFM) is a group of congenital skeletal disorders which may occur either as an isolated abnormality or in syndromic forms with extra-limb manifestations. Chromosomal micro-duplication or micro-triplication involving 17p13.3 region has been described as the most common cause of split hand/foot malformation with long bone deficiency (SHFLD) in several different Caucasian and Asian populations. Gene dosage effect of the extra copies of BHLHA9 gene at this locus has been implicated in the pathogenesis of SHFLD.
    The proband was a female child born to non-consanguineous parents. She was referred for genetic evaluation of bilateral asymmetric ectrodactyly involving both hands and right foot along with right tibial hemimelia. The right foot had fixed clubfoot deformity with only 2 toes. The mother had bilateral ectrodactyly involving both hands, but the rest of the upper limbs and both lower limbs were normal. Neither of them had any other congenital malformations or neurodevelopmental abnormalities. Genetic testing for rearrangement of BHLHA9 gene by quantitative polymerase chain reaction confirmed the duplication of the BHLHA9 gene in both the proband and the mother.
    We report the first Sri Lankan family with genetic diagnosis of BHLHA9 duplication causing SHFLD. This report along with the previously reported cases corroborate the possible etiopathogenic role of BHLHA9 gene dosage imbalances in SHFM and SHFLD across different populations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Case Reports
    Mesoaxial syndactyly is characterized by fusion of the central digits. The disorder segregates in autosomal recessive pattern and mapped on human chromosome 17p13.3. Homozygous missense mutations in the BHLHA9 have been reported to cause mesoaxial synostotic syndactyly with phalangeal reduction (MSSD). In the present study, we have investigated a family segregating mesoaxial synostotic syndactyly with phalangeal reduction (MSSD) in autosomal recessive manner. Genotyping using microsatellite markers followed by Sanger sequencing revealed a homozygous deletion and insertion mutation (NM_001164405: c.252_270delinsGCA; p.(Phe85Glufs*108)) in the BHLHA9 gene in affected individuals of the family. This study reports the first frameshift mutation in the BHLHA9 causing mesoaxial synostotic syndactyly and phalangeal reduction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Split hand/foot malformation (SHFM) is a genetically heterogeneous limb malformation with variable expressivity. SHFM with tibia or femur aplasia is called SHFM with long bone deficiency (SHFLD). 17p13.3 duplications containing BHLHA9 are associated with SHFLD. Cases with variable SHFLD phenotype and different 17p13.3 duplicated regions are reported. The severity of long bone defect could not be simply explained by BHLHA9 overdosage or 17p13.3 duplication.
    A four-generation Chinese SHFM family was recruited. Three family members have long bone defects, one male was severely affected with hypoplasia or aplasia in three of four limbs. Linkage analysis and direct sequencing of candidate genes were used to exclude six responsible genes/loci for isolated SHFM. Array comparative genomic hybridization (CGH) was performed to detect copy number variations on a genome-wide scale, and quantitative real-time polymerase chain reaction (qPCR) assays were designed to validate the identified copy number variation in the index and other family members.
    No mutations were found in genes or loci linked to isolated SHFM. A ~ 966 kb duplication was identified in 17p13.3 by array CGH, in which BHLHA9 surrounding region presented as triplication. The qPCR assays confirmed the indicated 17p13.3 duplication as well as BHLHA9 triplication in all available affected family members and other two asymptomatic carriers. Given the incomplete penetrance in SHFLD, those two carriers were regarded as non-penetrant, which suggested that the genomic rearrangement was co-segregated with malformation in this family.
    The present study reports an additional SHFLD family case with 17p13.3 genomic rearrangement. To our knowledge, the 966 kb genomic rearrangement is larger in size than any previously reported SHFLD-associated 17p13.3 duplication, and the present family shows marked phenotypic variability with two asymptomatic carriers and one patient with an extremely severe phenotype. This rare case provides the opportunity to identify underlying genotype-phenotype correlations between SHFLD and 17p13.3 genomic rearrangement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Split hand/foot malformation (SHFM) and SHFM combined with long-bone deficiency (SHFLD) are congenital dysgeneses of the limb. Although six different loci/mutations (SHFM1-SHFM6) have been found from studies on families with SHFM, the causes and associated pathogenic mechanisms for a large number of patients remain unidentified. On the basis of the identification of a duplicated gene region involving BHLHA9 in some affected families, BHLHA9 was identified as a novel SHFM/SHFLD-related gene. Although Bhlha9 is predicted to participate in limb development as a transcription factor, its precise function is unclear. Therefore, to study its physiological function, we generated a Bhlha9-knockout mouse and investigated gene expression and the associated phenotype in the limb bud. Bhlha9-knockout mice showed syndactyly and poliosis in the limb. Moreover, some apical ectodermal ridge (AER) formation related genes, including Trp63, exhibited an aberrant expression pattern in the limb bud of Bhlha9-knockout mice; TP63 (Trp63) was regulated by Bhlha9 on the basis of in vitro analysis. These observations suggest that Bhlha9 regulates AER formation during limb/finger development by regulating the expression of some AER-formation-related genes and abnormal expression of Bhlha9 leads to SHFM and SHFLD via dysregulation of AER formation and associated gene expression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Case Reports
    Complex Camptosynpolydactyly is an autosomal recessive disorder characterized by complex hand deformities described earlier by us in a consanguineous family. We report on identification of mutations in BHLHA9 gene in this condition. Our results indicate that Complex Camptosynpolydactyly and Mesoaxial synostotic syndactyly with phalangeal reduction (MSSD) are likely to be allelic disorders. © 2016 Wiley Periodicals, Inc.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    Chromosome 17p13.3 is a gene rich region that when deleted is associated with the well-known Miller-Dieker syndrome. A recently described duplication syndrome involving this region has been associated with intellectual impairment, autism and occasional brain MRI abnormalities. We report 34 additional patients from 21 families to further delineate the clinical, neurological, behavioral, and brain imaging findings. We found a highly diverse phenotype with inter- and intrafamilial variability, especially in cognitive development. The most specific phenotype occurred in individuals with large duplications that include both the YWHAE and LIS1 genes. These patients had a relatively distinct facial phenotype and frequent structural brain abnormalities involving the corpus callosum, cerebellar vermis, and cranial base. Autism spectrum disorders were seen in a third of duplication probands, most commonly in those with duplications of YWHAE and flanking genes such as CRK. The typical neurobehavioral phenotype was usually seen in those with the larger duplications. We did not confirm the association of early overgrowth with involvement of YWHAE and CRK, or growth failure with duplications of LIS1. Older patients were often overweight. Three variant phenotypes included cleft lip/palate (CLP), split hand/foot with long bone deficiency (SHFLD), and a connective tissue phenotype resembling Marfan syndrome. The duplications in patients with clefts appear to disrupt ABR, while the SHFLD phenotype was associated with duplication of BHLHA9 as noted in two recent reports. The connective tissue phenotype did not have a convincing critical region. Our experience with this large cohort expands knowledge of this diverse duplication syndrome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Split hand/foot malformation (SHFM) with long-bone deficiency (SHFLD, MIM#119100) is a rare condition characterized by SHFM associated with long-bone malformation usually involving the tibia. Previous published data reported several unrelated patients with 17p13.3 duplication and SHFLD. Recently, the minimal critical region had been reduced, suggesting that BHLHA9 copy number gains are associated with this limb defect. Here, we report on 13 new families presenting with ectrodactyly and harboring a BHLHA9 duplication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号