B cell signaling

B 细胞信号转导
  • 文章类型: Journal Article
    B细胞受体(BCR)与多组分共受体复合物一起发信号以响应于抗原结合而启动B细胞活化。这里,我们利用过氧化物酶催化的邻近标记结合定量质谱来跟踪BCR刺激后10s至2hRaji细胞中的共受体信号传导动力学。这种方法能够跟踪2,814个邻近标记的蛋白质和1,394个磷酸位点,并提供了募集到CD19附近的蛋白质的无偏定量分子图谱,CD19是共受体复合物的信号亚基。我们详细介绍了CD19信号效应子的募集动力学,并鉴定了以前未表征的B细胞激活介质。我们表明,谷氨酸转运体SLC1A1负责介导快速代谢重编程,并在B细胞活化过程中维持氧化还原稳态。这项研究提供了BCR信号的全面图谱和丰富的资源,用于揭示调节激活的复杂信号网络。
    The B cell receptor (BCR) signals together with a multi-component co-receptor complex to initiate B cell activation in response to antigen binding. Here, we take advantage of peroxidase-catalyzed proximity labeling combined with quantitative mass spectrometry to track co-receptor signaling dynamics in Raji cells from 10 s to 2 h after BCR stimulation. This approach enables tracking of 2,814 proximity-labeled proteins and 1,394 phosphosites and provides an unbiased and quantitative molecular map of proteins recruited to the vicinity of CD19, the signaling subunit of the co-receptor complex. We detail the recruitment kinetics of signaling effectors to CD19 and identify previously uncharacterized mediators of B cell activation. We show that the glutamate transporter SLC1A1 is responsible for mediating rapid metabolic reprogramming and for maintaining redox homeostasis during B cell activation. This study provides a comprehensive map of BCR signaling and a rich resource for uncovering the complex signaling networks that regulate activation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    系统性红斑狼疮(SLE)是一种严重的自身免疫性疾病,不仅在症状上表现出相当大的异质性,但也有其环境和遗传原因。对SLE患者的研究表明,许多遗传变异有助于疾病的发展。然而,通常其病因仍然未知。确定这种病因的现有努力集中在小鼠模型中的SLE上,不仅揭示了特定基因的突变导致SLE的发展。而且,几种基因突变的上位效应显着放大了疾病的表现。SLE的全基因组关联研究已经确定了参与免疫复合物清除和淋巴细胞信号传导这两个生物学过程的基因座。B淋巴细胞上表达的抑制性受体缺乏,Siglec-G,已被证明会引发衰老小鼠的SLE发展,在DNA降解DNase1和DNase1l3中存在突变,这些突变与清除含DNA的免疫复合物有关。这里,我们分析了缺乏Siglecg和DNase1或Siglecg和DNase1l3的小鼠中SLE样症状的发展,以评估这些基因的潜在上位效应。我们发现,衰老的Siglecg-/-xDnase1-/-小鼠的生发中心B细胞和滤泡辅助性T细胞增加。相比之下,抗dsDNA抗体和抗核抗体在衰老的Siglecg-/-xDnase1l3-/-小鼠中强烈增加,与单一缺陷小鼠相比。肾脏的组织学分析显示Siglecg-/-xDnase1-/-和Siglecg-/-xDnase1l3-/-小鼠的肾小球肾炎,但后者的肾小球损伤更强。总的来说,这些发现强调了Siglecg与DNase1和Dnase1l3的上位效应对疾病表现的影响,并强调了SLE中其他基因突变的潜在组合效应.
    Systemic lupus erythematosus (SLE) is a severe autoimmune disease that displays considerable heterogeneity not only in its symptoms, but also in its environmental and genetic causes. Studies in SLE patients have revealed that many genetic variants contribute to disease development. However, often its etiology remains unknown. Existing efforts to determine this etiology have focused on SLE in mouse models revealing not only that mutations in specific genes lead to SLE development, but also that epistatic effects of several gene mutations significantly amplify disease manifestation. Genome-wide association studies for SLE have identified loci involved in the two biological processes of immune complex clearance and lymphocyte signaling. Deficiency in an inhibitory receptor expressed on B lymphocytes, Siglec-G, has been shown to trigger SLE development in aging mice, as have mutations in DNA degrading DNase1 and DNase1l3, that are involved in clearance of DNA-containing immune complexes. Here, we analyze the development of SLE-like symptoms in mice deficient in either Siglecg and DNase1 or Siglecg and DNase1l3 to evaluate potential epistatic effects of these genes. We found that germinal center B cells and follicular helper T cells were increased in aging Siglecg -/- x Dnase1 -/- mice. In contrast, anti-dsDNA antibodies and anti-nuclear antibodies were strongly increased in aging Siglecg-/- x Dnase1l3-/- mice, when compared to single-deficient mice. Histological analysis of the kidneys revealed glomerulonephritis in both Siglecg -/- x Dnase1 -/- and Siglecg-/- x Dnase1l3-/- mice, but with a stronger glomerular damage in the latter. Collectively, these findings underscore the impact of the epistatic effects of Siglecg with DNase1 and Dnase1l3 on disease manifestation and highlight the potential combinatory effects of other gene mutations in SLE.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The selection of B cells (BCs) in germinal centers (GCs) is pivotal to the generation of high-affinity antibodies and memory BCs, but it lacks global understanding. Based on the idea of a single Tfh-cell signal that controls BC selection and division, experiments appear contradictory. Here, we use the current knowledge on the molecular pathways of GC BCs to develop a theory of GC BC selection and division based on the dynamics of molecular factors. This theory explains the seemingly contradictory experiments by the separation of signals for BC fate decision from signals controlling the number of BC divisions. Three model variants are proposed and experiments are predicted that allow one to distinguish those. Understanding information processing in molecular BC states is critical for targeted immune interventions, and the proposed theory implies that selection and division can be controlled independently in GC reactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Autoantibody production by plasma cells (PCs) plays a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). The molecular pathways by which B cells become pathogenic PC secreting autoantibodies in SLE are incompletely characterized. Histone deactylase 6 (HDAC6) is a unique cytoplasmic HDAC that modifies the interaction of a number of tubulin- associated proteins; inhibition of HDAC6 has been shown to be beneficial in murine models of SLE, but the downstream pathways accounting for the therapeutic benefit have not been clearly delineated. In the current study, we sought to determine whether selective HDAC6 inhibition would abrogate abnormal B cell activation in SLE. We treated NZB/W lupus mice with the selective HDAC6 inhibitor, ACY-738, for 4 weeks beginning at 20 weeks-of age. After only 4 weeks of treatment, manifestation of lupus nephritis (LN) were greatly reduced in these animals. We then used RNAseq to determine the genomic signatures of splenocytes from treated and untreated mice and applied computational cellular and pathway analysis to reveal multiple signaling events associated with B cell activation and differentiation in SLE that were modulated by HDAC6 inhibition. PC development was abrogated and germinal center (GC) formation was greatly reduced. When the HDAC6 inhibitor-treated lupus mouse gene signatures were compared to human lupus patient gene signatures, the results showed numerous immune, and inflammatory pathways increased in active human lupus were significantly decreased in the HDAC6 inhibitor treated animals. Pathway analysis suggested alterations in cellular metabolism might contribute to the normalization of lupus mouse spleen genomic signatures, and this was confirmed by direct measurement of the impact of the HDAC6 inhibitor on metabolic activities of murine spleen cells. Taken together, these studies show HDAC6 inhibition decreases B cell activation signaling pathways and reduces PC differentiation in SLE and suggest that a critical event might be modulation of cellular metabolism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    In the bone marrow, preB cells are found adjacent to the bone endosteum where bone synthesizing osteoblast and bone resorbing osteoclasts reside. Although there is evidence of interactions between preB and bone cells, the factors that contribute to such interactions are poorly understood. A critical checkpoint for preB cell development assesses the integrity of the nascent immunoglobulin μ heavy chain (HC) by testing whether it can participate in the formation of a preB cell receptor (preBCR), composed of the μ HC and surrogate light chain (LC). In this work, we tested whether loss of preBCR components can affect bone synthesis. A panel of gene targeted mice with sequential blocks in preBCR formation or function [surrogate light chain component lambda 5 deleted (λ5-/-), transmembrane domain of μHC deleted (IgM-mem-/-), and CD19 preBCR co-receptor deleted (CD19-/-)] were evaluated for effects on postnatal bone synthesis. Postnatal bone mass was analyzed in 6 month old mice using μ-CT, histomorphometry and double calcein labeling. Both cortical and trabecular bone mass were significantly decreased in the femurs of the λ5 and IgM-mem deficient mice. Histomorphometric analysis showed a decrease in the numbers of osteoblasts and osteoclasts in all three mutant strains. Double calcein labeling revealed a significant decrease in dynamic synthesis and mineralization of bone in λ5-/- mice. Our data strongly suggest that interference with preBCR formation or function affects bone homeostasis independent of the presence or absence of mature B cells, and that components of the preBCR play important, and potentially distinct, roles in regulating adult bone mass.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Depending on its occurrence in the germline or somatic context, a single point mutation, S707Y, of phospholipase C-γ2 (PLCγ2) gives rise to two distinct human disease states: acquired resistance of chronic lymphocytic leukemia cells (CLL) to inhibitors of Brutons´s tyrosine kinase (Btk) and dominantly inherited autoinflammation and PLCγ2-associated antibody deficiency and immune dysregulation, APLAID, respectively. The functional relationships of the PLCγ2S707Y mutation to other PLCG2 mutations causing (i) Btk inhibitor resistance of CLL cells and (ii) the APLAID-related human disease PLCγ2-associated antibody deficiency and immune dysregulation, PLAID, revealing different clinical characteristics including cold-induced urticaria, respectively, are currently incompletely understood. Here, we show that PLCγ2S707 point mutants displayed much higher activities at 37° C than the CLL Btk inhibitor resistance mutants R665W and L845F and the two PLAID mutants, PLCγ2Δ19 and PLCγ2Δ20-22. Combinations of CLL Btk inhibitor resistance mutations synergized to enhance PLCγ2 activity, with distinct functional consequences for different temporal orders of the individual mutations. Enhanced activity of PLCγ2S707Y was not observed in a cell-free system, suggesting that PLCγ2 activation in intact cells is dependent on regulatory rather than mutant-enzyme-inherent influences. Unlike the two PLAID mutants, PLCγ2S707Y was insensitive to activation by cooling and retained marked hyperresponsiveness to activated Rac upon cooling. In contrast to the PLAID mutants, which are insensitive to activation by endogenously expressed EGF receptors, the S707Y mutation markedly enhanced the stimulatory effect of EGF, explaining some of the pathophysiological discrepancies between immune cells of PLAID and APLAID patients in response to receptor-tyrosine-kinase activation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    B cell responses are regulated by antigen acquisition, processing, and presentation to helper T cells. These functions are thought to depend on contractile activity of non-muscle myosin IIa. Here, we show that B cell-specific deletion of the myosin IIa heavy chain reduced the numbers of bone marrow B cell precursors and splenic marginal zone, peritoneal B1b, and germinal center B cells. In addition, myosin IIa-deficient follicular B cells acquired an activated phenotype and were less efficient in chemokinesis and extraction of membrane-presented antigens. Moreover, myosin IIa was indispensable for cytokinesis. Consequently, mice with myosin IIa-deficient B cells harbored reduced serum immunoglobulin levels and did not mount robust antibody responses when immunized. Altogether, these data indicate that myosin IIa is a negative regulator of B cell activation but a positive regulator of antigen acquisition from antigen-presenting cells and that myosin IIa is essential for B cell development, proliferation, and antibody responses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Mathematical modeling is a powerful tool in systems biology; we focus here on improving the reliability of model predictions by reducing the uncertainty in model dynamics through experimental design. Model-based experimental design is a process by which experiments can be systematically chosen to reduce dynamic uncertainty in a given model. We discuss the Maximally Informative Next Experiment (MINE) method for group-wise selection of points in an experimental design and present a convergence result for MINE with nonlinear models. As an application, we illustrate the method on polynomial regression and an ODE model for immune system dynamics. The MINE criterion sequentially determines experiments that can be conducted to best refine model dynamics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    B cells are capable of receptor-mediated responses to foreign antigens. Recognition of microbial-derived nucleic acid (NA) by toll-like receptors (TLRs) 7 and 9 in B cells has been substantiated. Endogenous NA released from damaged or dying cells can also be immunogenic in certain contexts and can incite aberrant activation of B cells. When TLR-driven B cell receptor (BCR)-activated B cells are not properly constrained, pathologic autoantibodies are produced. It is also clear that endosomal TLR7/TLR9 can operate in conjunction with BCR. In addition to BCR signaling, a balance between TLR7 and TLR9 is pivotal in the development of B cell autoreactivity. While TLR9 is important in normal memory B cell responses through BCR, TLR9 activation has been implicated in autoantibody production. Paradoxically, TLR9 also plays known protective roles against autoimmunity by directly and indirectly inhibiting TLR7-mediated autoantibody production. Herein, we summarize literature supporting mechanisms underpinning the promotion of pathological BCR-activated B cells by TLR7 and TLR9. We focus on the literature regarding known points of TLR7/TLR9 and BCR crosstalk. Data also suggest that the degree of TLR responsiveness relies on alterations of certain intrinsic B-cell signaling molecules and is also context specific. Because allogeneic hematopoietic stem cell transplantation is a high NA and B cell-activating factor environment, we conclude that B cell studies of synergistic TLR-BCR signaling in human diseases like chronic graft-versus-host disease are warranted. Further understanding of the distinct molecular pathways mediating TLR-BCR synergy will lead to the development of therapeutic strategies in autoimmune disease states.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    泛素化在调节包括免疫反应在内的各种生物学功能中起着核心作用。泛素化通过E1泛素激活酶的级联酶反应诱导,E2泛素结合酶,和E3泛素连接酶,并被去泛素酶逆转。取决于酶,泛素链的特定连接类型产生或水解。因为泛素链的不同连接类型控制着底物的命运,了解泛素酶的调节机制是核心。在这次审查中,我们重点介绍了免疫信号级联中泛素化的最新知识,包括T细胞和B细胞信号级联以及由各种泛素酶调节的TNF信号级联.此外,我们强调TRIM泛素连接酶家族是调节免疫反应的关键E3泛素连接酶的例子之一.
    Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号