Antibacterial photodynamic therapy

抗菌光动力疗法
  • 文章类型: Journal Article
    抗生素抗性的日益增长的挑战在对抗医疗设备上的微生物感染和生物膜预防方面带来了巨大挑战。最近,抗菌光动力疗法(aPDT)现在正在成为克服这一问题的替代疗法。在这里,我们合成并表征了四种Ru(II)-配合物,viz.,[Ru(ph-tpy)(bpy)Cl]PF6(Ru1),[Ru(ph-tpy)(dpq)Cl]PF6(Ru2),[Ru(ph-tpy)(dppz)Cl]PF6(Ru3),和[Ru(ph-tpy)(dppn)Cl]PF6(Ru4)(其中4'-苯基-2,2':6',2″-三吡啶=ph-tpy;2,2'-联吡啶=bpy;二吡啶[3,2-f:2',3\'-h]喹喔啉=dpq;二吡啶并[3,2-a:2\',3\'-c]吩嗪=dppz;苯并[I]二吡啶并[3,2-a:2\',3\'-c]吩嗪=dppn),其中Ru2-Ru4是小说。从Ru2的晶体结构可以看出具有RuN5Cl核的配合物的八面体几何形状。Ru1-Ru4在450-600nm区域显示出MLCT吸收带,对aPDT性能有用。Further,Ru1-Ru4的最佳三重态激发态能量和优异的光稳定性使其成为aPDT的良好光敏剂。Ru1-Ru4在可见光暴露(400-700nm,10Jcm-2),使用不同的抗菌试验证实。机理研究表明,细菌生长的抑制是由于在用Ru2-Ru4处理时氧化应激的产生(通过NADH氧化和ROS产生),导致细菌壁的破坏。当暴露于光照时,Ru2对革兰氏阴性(大肠杆菌)和革兰氏阳性(枯草芽孢杆菌)细菌均表现出最佳的杀灭性能。Ru2-Ru4,当涂覆在聚二甲基硅氧烷(PDMS)圆盘上时,显示出长期的可重用性和持久的抗生物膜特性。分子对接证实了Ru2-Ru4与FabH(调节大肠杆菌的脂肪酸生物合成)和PgaB(提供结构稳定性并有助于大肠杆菌的生物膜形成)的有效相互作用,导致可能的下调。对健康Wistar大鼠的体内研究证实了Ru2的生物相容性。这项研究表明,这些铅配合物(Ru2-Ru4)可以用作低浓度的有效替代抗菌剂,以光动力疗法(PDT)根除细菌。
    Growing challenges with antibiotic resistance pose immense challenges in combating microbial infections and biofilm prevention on medical devices. Lately, antibacterial photodynamic therapy (aPDT) is now emerging as an alternative therapy to overcome this problem. Herein, we synthesized and characterized four Ru(II)-complexes, viz., [Ru(ph-tpy)(bpy)Cl]PF6 (Ru1), [Ru(ph-tpy)(dpq)Cl]PF6 (Ru2), [Ru(ph-tpy)(dppz)Cl]PF6 (Ru3), and [Ru(ph-tpy)(dppn)Cl]PF6 (Ru4) (where 4\'-phenyl-2,2\':6\',2″-terpyridine = ph-tpy; 2,2\'-bipyridine = bpy; dipyrido[3,2-f:2\',3\'-h]quinoxaline = dpq; dipyrido[3,2-a:2\',3\'-c]phenazine = dppz; and Benzo[I]dipyrido[3,2-a:2\',3\'-c]phenazine = dppn), among which Ru2-Ru4 are novel. Octahedral geometry of the complexes with a RuN5Cl core was evident from the crystal structure of Ru2. Ru1-Ru4 showed an MLCT absorption band in the 450-600 nm region, useful for aPDT performances. Further, optimum triplet excited state energy and excellent photostability of Ru1-Ru4 made them good photosensitizers for aPDT. Ru1-Ru4 demonstrated enhanced antimicrobial activity on visible-light exposure (400-700 nm, 10 J cm-2), confirmed using different antibacterial assays. Mechanistic studies revealed that inhibition of bacterial growth was due to the generation of oxidative stress (via NADH oxidation and ROS generation) upon treatment with Ru2-Ru4, resulting in destruction of the bacterial wall. Ru2 performed best killing performance against both Gram-negative (Escherichia coli) and Gram-positive (Bacillus subtilis) bacteria when exposed to light. Ru2-Ru4, when coated on a polydimethylsiloxane (PDMS) disk, showed long-term reusability and durable antibiofilm properties. Molecular docking confirmed the efficient interaction of Ru2-Ru4 with FabH (regulates fatty acid biosynthesis of E. coli) and PgaB (gives structural stability and helps biofilm formation of E. coli), resulting in probable downregulation. In vivo studies with healthy Wistar rats confirmed the biocompatibility of Ru2. This study shows that these lead complexes (Ru2-Ru4) can be used as potent alternative antimicrobial agents in low concentrations toward bacterial eradication with photodynamic therapy (PDT).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    抗生素的滥用和过度使用使耐药细菌出现。抗菌光动力疗法(APDT)已显示出突出的优点,可以通过照射光敏剂产生的细胞毒性活性氧来消除耐药细菌。然而,大多数光敏剂对革兰氏阴性菌的清除无效。这里NBS的共轭,光敏剂,已设计与一个(NBS-DPA-Zn)或两个(NBS-2DPA-Zn)当量的锌-吡啶甲基胺(Zn-DPA)连接,以实现对不同细菌的功能识别。由于NBS的阳离子特性和Zn-DPA的金属转移通道效应,NBS-DPA-Zn表现出第一个将铜绿假单胞菌与其他革兰氏阴性细菌区分开的试剂。而NBS-2DPA-Zn由于双Zn-DPA的双臂增强了与细菌阴离子膜的相互作用而显示出广谱抗菌作用,导致细菌聚集,从而提供了APDT对细菌和相应生物膜的功效。结合Pluronic的水凝胶,NBS-2DPA-Zn@凝胶在混合细菌性糖尿病小鼠模型感染中具有良好的临床应用前景。这可能会提出一种新的方法,可以通过对Zn-DPA的智能调控来实现细菌的功能识别和消除。并显示出优异的抗菌应用潜力。
    The abuse and overuse of antibiotics let drug-resistant bacteria emerges. Antibacterial photodynamic therapy (APDT) has shown outstanding merits to eliminate the drug-resistant bacteria via cytotoxic reactive oxygen species produced by irradiating photosensitizer. However, most of photosensitizers are not effective for Gram-negative bacteria elimination. Herein conjugates of NBS, a photosensitizer, linked with one (NBS-DPA-Zn) or two (NBS-2DPA-Zn) equivalents of zinc-dipicolylamine (Zn-DPA) have been designed to achieve the functional recognition of different bacteria. Due to the cationic character of NBS and metal transfer channel effect of Zn-DPA, NBS-DPA-Zn exhibited the first regent to distinguish P. aeruginosa from other Gram-negative bacteria. Whereas NBS-2DPA-Zn showed broad-spectrum antibacterial effect because the two arm of double Zn-DPA enhanced interactions with anionic membranes of bacteria, led the bacteria aggregation and thus provided the efficacy of APDT to bacteria and corresponding biofilm. In combination with a hydrogel of Pluronic, NBS-2DPA-Zn@gel shows promising clinical application in mixed bacterial diabetic mouse model infection. This might propose a new method that can realize functional identification and elimination of bacteria through intelligent regulation of Zn-DPA, and shows excellent potential for antibacterial application.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    耐甲氧西林金黄色葡萄球菌(MRSA)对社会健康造成极大危害,因为大多数抗生素无效。由于成像引导的无耐药性治疗的优势,已经提出了光动力治疗(PDT)来对抗MRSA。然而,用于PDT的传统光敏剂受限于聚集引起的成像猝灭和低光动力抗菌效率。在这项工作中,我们合成了一种新的聚集诱导发射(AIE)光敏剂(APNO),通过AIE活性光敏剂成像可以在3s内快速区分革兰氏阳性和革兰氏阴性细菌。同时,APNO能在光照下产生抗菌活性氧,具有抗菌PDT的潜力。然后,APNO负载PHEAA水凝胶获得高效的光动力水凝胶(APNO@gel)。体外结果表明,在较低功率的光照下,APNO@凝胶完全抑制了MRSA。进行转录组分析以研究APNO@凝胶的抗菌机制。最重要的是,在MRSA伤口感染模型中,APNO@gel对MRSA也表现出显著的抑制和杀伤能力,这将进一步促进伤口的快速愈合。因此,光动力水凝胶为MRSA超快成像和杀伤提供了有希望的策略。
    Methicillin-resistant Staphylococcus aureus (MRSA) causes great health hazards to society because most antibiotics are ineffective. Photodynamic treatment (PDT) has been proposed to combat MRSA due to the advantage of imaging-guided no-drug resistance therapy. However, the traditional photosensitizers for PDT are limited by aggregation-caused quenching for imaging and low photodynamic antibacterial efficiency. In this work, we synthesize a new aggregation-induced emission (AIE) photosensitizer (APNO), which can ultrafast distinguish between Gram-positive and Gram-negative bacteria within 3 s by AIE-active photosensitizer imaging. Meanwhile, APNO can generate antibacterial reactive oxygen species under light irradiation, which holds potential for antibacterial PDT. Then, APNO is loaded by PHEAA hydrogel to obtain a highly efficient photodynamic hydrogel (APNO@gel). In vitro results show complete inhibition of MRSA by APNO@gel under lower-power light irradiation. Transcriptome analysis is performed to investigate antibacterial mechanism of APNO@gel. Most importantly, APNO@gel also exhibits significant inhibition and killing ability of MRSA in the MRSA wound infection model, which will further promote rapid wound healing. Therefore, the photodynamic hydrogel provides a promising strategy toward MRSA ultrafast imaging and killing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这里,我们描述了3'-唾液酸乳糖-聚乙烯亚胺-氯e6缀合物(3PC),精心设计以有效靶向螺杆菌细菌(H.幽门螺杆菌)在胃环境中。3PC的组成包含聚乙烯亚胺,阳离子聚合物,3'-唾液酸乳糖,对幽门螺杆菌表面蛋白具有特异性结合亲和力,以及能够响应于特定波长而产生氧自由基的光敏剂。3PC的显着特征在于其增强与静电力促进的阴离子粘液层相互作用的能力。这种相互作用导致在肠道环境中的长期停留。在肠道环境中的延长假期克服了固有的局限性,这些局限性历来阻碍常规抗生素有效地到达和靶向幽门螺杆菌。3PC可以作为抗菌光动力疗法的有力工具,它的多功能性扩展到解决各种抗生素抗性菌株带来的挑战。3PC在增加肠道停留时间和根除幽门螺杆菌方面的特殊功效已在动物模型中得到有力证实。特别是在老鼠身上。总之,3PC是一种能够根除幽门螺杆菌的强大药物,无论其抗生素耐药性如何,通过有效地穿透和选择性地靶向胃环境内的粘液层。
    Herein, we describe the 3\'-sialyllactose-polyethyleneimine-chlorine e6 conjugate (3PC), meticulously engineered to effectively target Helicobacter bacteria (H. pylori) within the gastric environment. The composition of 3PC comprises polyethyleneimine, a cationic polymer, 3\'-sialyllactose, which exhibits a specific binding affinity for H. pylori surface proteins, and a photosensitizer capable of generating oxygen radicals in response to specific wavelengths. The distinctive feature of 3PC lies in its capacity to enhance interaction with the anionic mucus layer facilitated by electrostatic forces. This interaction results in prolonged residence within the intestinal environment. The extended vacation in the intestinal milieu overcomes inherent limitations that have historically impeded conventional antibiotics from efficiently reaching and targeting H. pylori. 3PC can be harnessed as a potent tool for antibacterial photodynamic therapy, and its versatility extends to addressing the challenges posed by various antibiotic-resistant strains. The exceptional efficacy of 3PC in enhancing intestinal residence time and eradicating H. pylori has been robustly substantiated in animal models, particularly in mice. In summary, 3PC is a formidable agent capable of eradicating H. pylori, irrespective of its antibiotic resistance status, by efficiently penetrating and selectively targeting the mucus layer within the gastric environment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    光热处理(PTT)已成为消除生物膜的有希望的途径,然而它的潜在缺点,如局部高热和细菌耐热性,提出了挑战。为了解决这些问题,设计了一种创新的纳米平台(Au@mSiO2-arg/ICG),该平台集成了光疗和气体治疗功能。这种多面纳米平台由介孔二氧化硅涂覆的Au纳米棒(Au@mSiO2)组成,补充l-精氨酸(l-arg)和吲哚菁绿(ICG),并且被设计用于温和的温度PTT,旨在根除生物膜。Au@mSiO2-Arg/ICG纳米粒子(NPs)通过生成一氧化氮(NO)气体,热,和活性氧(ROS)在808nm的光照射下。ICG产生的ROS启动与l-arg的级联反应,最终产生NO气体分子。NO的这种局部释放不仅有效地抑制了热休克蛋白70的表达,减轻了细菌的耐热性。而且还减少了细胞外聚合物,从而使治疗剂更好地渗透。此外,该纳米平台在808nm光照射(0.8W·cm-2)下,在脓肿模型中实现了超过99%的出色生物膜消除率,从而确立了其作为临床环境中NO增强的轻度PTT和抗菌光动力疗法(aPDT)的可靠策略的潜力。
    Photothermal treatment (PTT) has emerged as a promising avenue for biofilm elimination, yet its potential drawbacks, such as local hyperpyrexia and bacterial heat resistance, have posed challenges. To address these concerns, an innovative nanoplatform (Au@mSiO2 -arg/ICG) is devised that integrates phototherapeutic and gas therapeutic functionalities. This multifaceted nanoplatform is composed of mesoporous silica-coated Au nanorods (Au@mSiO2 ), supplemented with l-arginine (l-arg) and indocyanine green (ICG), and is engineered for mild temperature PTT aimed at biofilm eradication. Au@mSiO2 -arg/ICG nanoparticles (NPs) show excellent antibacterial effects through the generation of nitric oxide (NO) gas, heat, and reactive oxygen species (ROS) under 808 nm light irradiation. The ROS generated by ICG initiates a cascade reaction with l-arg, ultimately yielding NO gas molecules. This localized release of NO not only effectively curbs the expression of heat shock proteins 70 mitigating bacterial thermoresistance, but also reduces extracellular polymeric substance allowing better penetration of the therapeutic agents. Furthermore, this nanoplatform achieves an outstanding biofilm elimination rate of over 99% in an abscess model under 808 nm light irradiation (0.8 W·cm-2 ), thereby establishing its potential as a dependable strategy for NO-enhanced mild PTT and antibacterial photodynamic therapy (aPDT) in clinical settings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细菌伤口感染已成为全球人类健康的关键威胁,由于抗生素使用不当导致抗生素抗性细菌逐渐增加,情况变得更糟。为了减少抗生素的使用,避免抗生素耐药菌的增加,研究人员越来越关注光动力疗法,它利用光产生活性氧来杀死细菌。通过光动力疗法治疗细菌感染的伤口需要将光敏剂(PS)固定在伤口部位并保持一定水平的伤口湿度。水凝胶是具有高水含量的材料,并且非常适合于将PS固定在伤口部位用于抗菌光动力疗法。因此,水凝胶通常装载有PS,用于通过抗菌光动力疗法治疗细菌感染的伤口。在这次审查中,我们系统地总结了PS负载水凝胶通过光动力疗法治疗细菌感染伤口的抗菌机制和应用。此外,综述了新型抗菌水凝胶的研究现状和研究进展。最后,综述了PS负载水凝胶的挑战和未来前景。
    Bacterial wound infection has emerged as a pivotal threat to human health worldwide, and the situation has worsened owing to the gradual increase in antibiotic-resistant bacteria caused by the improper use of antibiotics. To reduce the use of antibiotics and avoid the increase in antibiotic-resistant bacteria, researchers are increasingly paying attention to  photodynamic therapy, which uses light to produce reactive oxygen species to kill bacteria. Treating bacteria-infected wounds by photodynamic therapy requires fixing the photosensitizer (PS) at the wound site and maintaining a certain level of wound humidity. Hydrogels are materials with a high water content and are well suited for fixing PSs at wound sites for antibacterial photodynamic therapy. Therefore, hydrogels are often loaded with PSs for treating bacteria-infected wounds via antibacterial photodynamic therapy. In this review, we systematically summarised the antibacterial mechanisms and applications of PS-loaded hydrogels for treating bacteria-infected wounds via photodynamic therapy. In addition, the recent  studies and the research status progresses of novel antibacterial hydrogels are discussed. Finally, the challenges and future prospects of PS-loaded hydrogels are reviewed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    抗菌光动力疗法(APDT)已成为对抗细菌耐药性的有趣策略之一。然而,发现APDT的抗菌功效受到硫化氢(H2S)过量产生的细菌感染微环境的严重影响。在这里,通过组装Cu2+和氯e6(Ce6)开发了多功能APDT平台,具有独特的H2S可激活荧光(FL)和抗菌特性。值得注意的是,组装条件对于实现具有按需响应特性的Cu-Ce6纳米组装体(NAs)至关重要。在感染区,过表达的H2S可以选择性地激活Cu-Ce6NAs的猝灭FL和光敏化,使细菌感染和局部抗菌治疗的特异性识别与最小的副作用。重要的是,由于Nas中Cu2+对H2S的有效消耗,所以可以实现放大的氧化应激,导致增强的APDT。进一步确定了抗菌机制,包括释放的Ce6的广谱APDT活性,产生的多硫化铜(CuxS)的固有杀菌效果以及伴随的细菌硫化物代谢紊乱。这项研究可能为使用极简生物建筑单元的智能APDT平台的合理设计铺平了一条新途径,从而促进了纳米抗菌剂的临床翻译。本文受版权保护。保留所有权利。
    Antibacterial photodynamic therapy (APDT) has emerged as one of the intriguing strategies to combat bacterial resistance. However, the antibacterial efficacy of APDT is found to be severely impacted by the hydrogen sulfide (H2 S)-overproduced bacterial infection microenvironment. Herein, a multifunctional APDT platform is developed by assembling Cu2+ and chlorin e6 (Ce6), which exhibits unique H2 S-activatable fluorescence (FL) and antibacterial features. Noteworthily, the assembly conditions are crucial for achievement of Cu-Ce6 nanoassemblies (NAs) with the on-demand responsive properties. The quenched FL and photosensitization of Cu-Ce6 NAs can be selectively activated by the overexpressed H2 S in infected area, enabling specific recognition of bacterial infection and localized antibacterial therapy with minimized side effects. Significantly, amplified oxidative stress is achieved owning to the effective consumption of H2 S by Cu2+ in the NAs, leading to an enhanced APDT. The antibacterial mechanisms including broad-spectrum APDT activity of released Ce6, inherent sterilization effects of produced copper polysulfides and the accompanying disturbance of bacterial sulphide metabolism are further identified. This study may pave a new avenue for the rational design of intelligent APDT platform using minimalist biological building units and thus facilitating the clinical translation of nano-antibacterial agents.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞内金黄色葡萄球菌(S。金黄色葡萄球菌),尤其是耐甲氧西林金黄色葡萄球菌(MRSA),由于受到宿主细胞的保护而难以检测和根除。抗菌光动力疗法(aPDT)有望治疗细胞内细菌,前提是可以实现对细菌比宿主细胞的选择性损伤。根据哺乳动物细胞和金黄色葡萄球菌中硝基还原酶(NTR)水平的不同,本文设计并合成了NTR响应性光敏剂(PSs)(T)CyI-NO2。(T)CyI-NO2的发射和1O2生成被4-硝基苄基淬灭,但可以通过细菌NTR专门打开。因此,实现了细胞内金黄色葡萄球菌和MRSA的选择性成像和光失活。我们的发现可能为开发更有效和选择性的aPDT药物以对抗顽固性细胞内感染铺平道路。
    Intracellular Staphylococcus aureus (S. aureus), especially the methicillin resistant staphylococcus aureus (MRSA), are difficult to detect and eradicate due to the protection by the host cells. Antibacterial photodynamic therapy (aPDT) offers promise in treating intracellular bacteria, provided that selective damage to the bacteria ranther than host cells can be realized. According to the different nitroreductase (NTR) levels in mammalian cells and S. aureus, herein NTR-responsive photosensitizers (PSs) (T)CyI-NO2 were designed and synthesized. The emission and 1O2 generation of (T)CyI-NO2 are quenched by the 4-nitrobenzyl group, but can be specifically switched on by bacterial NTR. Therefore, selective imaging and photo-inactivation of intracellular S. aureus and MRSA were achieved. Our findings may pave the way for the development of more efficient and selective aPDT agents to combat intractable intracellular infections.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于抗生素滥用,细菌感染已成为世界范围内人类死亡的主要原因之一。迫切需要新型选择性抗微生物剂,希望维持微生物环境的平衡。光激活化疗剂已显示出消除具有吸引人的时空选择性的细菌的巨大潜力。在这项工作中,我们报道了增强罗丹明B的三重激发态性质的结构修饰,合成基于罗丹明的光敏剂RBPy。光激活后,RBPy在溶液和细菌中均表现出比母体化合物罗丹明B更强的光敏能力。重要的是,RBPy可以选择性灭活金黄色葡萄球菌,抑制生物膜形成,具有较高的生物相容性。这项工作为开发基于罗丹明的光活性化学疗法用于抗菌光动力疗法提供了新策略。
    Due to the antibiotics abuse, bacterial infection has become one of the leading causes of human death worldwide. Novel selective antimicrobial agents are urgently needed, with the hope of maintaining the balance of the microbial environment. Photo-activated chemotherapeutics have shown great potential to eliminate bacteria with appealing spatiotemporal selectivity. In this work, we reported the structural modification to enhance the triplet excited state property of Rhodamine B, synthesizing a rhodamine-based photosensitizer RBPy. Upon light activation, RBPy exhibited much stronger photosensitization ability than the parent compound Rhodamine B both in solution and in bacteria. Importantly, RBPy can selectively inactivate Staphylococcus aureus and inhibit biofilm formation with high biocompatibility. This work provides a new strategy to develop rhodamine-based photoactive chemotherapeutics for antimicrobial photodynamic therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    光动力疗法一直是解决多药耐药菌问题的抗菌工具,但是由于光敏剂的高聚集性和低溶解度而导致的副作用和低效率限制了其应用。由于咖啡酸的抗炎作用,两种新型光敏剂(CA-1-TBO,通过将咖啡酸与甲苯胺蓝O(TBO)缀合合成CA-TBO)。结构已通过1HNMR和高分辨率质谱表征。UV-vis吸收,测量了两种光敏剂的荧光光谱和辛醇-水分配系数,以评估它们的光物理性质和亲水/疏水性能。与父TBO相比,两种改性光敏剂显示出更高的量子产率和单线态氧的动力学常数,这得到了密度泛函理论模拟结果的支持。作为革兰阳性菌和革兰阴性菌的耐药代表,分别,金黄色葡萄球菌和铜绿假单胞菌已用于体外抗菌实验。两种改性光敏剂的灭菌效率远远超过母体TBO。辛醇-水分配系数和荧光定量的结果表明,改性光敏剂CA-1-TBO和CA-TBO可以比母体TBO更多地积累。基于扫描电子显微镜图像,蛋白质凝胶电泳,和细菌溶液的电导率,由于咖啡酸的作用,膜的通透性可以诱导抗菌光动力效率提高的可能机制。研究结果表明,天然酚类化合物在光敏剂分子的开发中具有重要的潜力,具有更高效,生物相容性和较少的副作用。
    Photodynamic therapy has always been an antibacterial tool for solving multi-drug resistant bacteria problem, but the side effects and the low efficiency due to the high aggregation and low solubility of photosensitizers limit its application. Due to the anti-inflammatory effect of caffeic acid, two novel photosensitizers (CA-1-TBO, CA-TBO) were synthesized by conjugating caffeic acid with toluidine blue O (TBO). The structures have been characterized by 1HNMR and high-resolution mass spectrometry. The UV-vis absorption, fluorescence spectra and the octanol-water partition coefficient of two photosensitizers were measured to evaluate their photophysical properties and hydrophilic/hydrophobic properties. Compared with parent TBO, the two modified photosensitizers have shown a higher quantum yield and kinetics constants of singlet oxygen, which has been supported by the simulation results of density functional theory. As drug-resistant representatives of gram-positive and gram-negative bacteria, respectively, S. aureus and P. aeruginosa have been used for in vitro antibacterial experiments. The sterilization efficiencies of the two modified photosensitizers far exceed that of parent TBO. The results of the octanol-water partition coefficient and fluorescence quantification showed that modified photosensitizers CA-1-TBO and CA-TBO could be more accumulated than parent TBO. Based on scanning electron microscopy images, protein gel electrophoresis, and the conductivity of the bacterial solution, the possible mechanism of improved antibacterial photodynamic efficiencies could be induced by membrane permeability due to the caffeic acid effect. The findings demonstrate the significant potential of natural phenolic compounds in the development of photosensitizer molecules with characteristics such as more efficient, biocompatible and less side effects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号