AlphaFold-Multimer

Alphafold - Multimer
  • 文章类型: Journal Article
    神经退行性疾病(ND)是以神经元功能受损为特征的中枢神经系统(CNS)疾病,和完全的损失,导致记忆丧失,学习困难,语言,和运动过程。这些疾病中最常见的是阿尔茨海默病(AD)和帕金森病(PD)。尽管还存在其他几种疾病。这些是额颞叶痴呆(FTD),肌萎缩侧索综合征(ALS),亨廷顿病(HD),和其他人;NDs的主要病理标志是蛋白质病,淀粉样蛋白-β(Aβ),Tau病,或突触核蛋白病。未经历正常构型的蛋白质的聚集,无论是由于突变还是通过细胞途径的某些干扰导致疾病。人工智能(AI)和深度学习(DL)已被证明在诊断和治疗各种先天性疾病方面是成功的。像AlphaFold(AF)这样的DL方法是CNS疾病成功的重大飞跃。DeepMind开发的这种3D蛋白质几何建模算法具有彻底改变生物学的潜力。AF有可能在与实验预测相当的精度水平上预测3D蛋白确认。具有精确估计蛋白质相互作用的额外优势。这一突破将有利于识别疾病的发展和刺激蛋白质功能受损的信号通路的干扰。尽管AlphaFold解决了结构生物学中的一个主要问题,它不能预测膜蛋白-药物设计的有益方法。
    Neurodegenerative diseases (ND) are disorders of the central nervous system (CNS) characterized by impairment in neurons\' functions, and complete loss, leading to memory loss, and difficulty in learning, language, and movement processes. The most common among these NDs are Alzheimer\'s disease (AD) and Parkinson\'s disease (PD), although several other disorders also exist. These are frontotemporal dementia (FTD), amyotrophic lateral syndrome (ALS), Huntington\'s disease (HD), and others; the major pathological hallmark of NDs is the proteinopathies, either of amyloid-β (Aβ), tauopathies, or synucleinopathies. Aggregation of proteins that do not undergo normal configuration, either due to mutations or through some disturbance in cellular pathway contributes to the diseases. Artificial Intelligence (AI) and deep learning (DL) have proven to be successful in the diagnosis and treatment of various congenital diseases. DL approaches like AlphaFold (AF) are a major leap towards success in CNS disorders. This 3D protein geometry modeling algorithm developed by DeepMind has the potential to revolutionize biology. AF has the potential to predict 3D-protein confirmation at an accuracy level comparable to experimentally predicted one, with the additional advantage of precisely estimating protein interactions. This breakthrough will be beneficial to identify diseases\' advancement and the disturbance of signaling pathways stimulating impaired functions of proteins. Though AlphaFold has solved a major problem in structural biology, it cannot predict membrane proteins-a beneficial approach for drug designing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    VI型分泌系统(T6SS)是微生物-微生物和微生物-宿主相互作用的重要介质。革兰氏阴性菌使用T6SS注射T6SS效应物(T6Es),通常是具有毒性活性的蛋白质,进入邻近的细胞。抗菌效应物具有中和自我中毒的同源免疫蛋白。这里,我们应用新的结构生物信息学工具,从17,920个编码T6SS的细菌基因组数据集中,对T6Es及其同源免疫蛋白进行系统发现和功能注释.使用结构聚类,我们确定了517个推定的T6E家族,优于基于序列的聚类。我们开发了一个逻辑回归模型来可靠地量化新的T6E免疫对的蛋白质-蛋白质相互作用,产生517个T6E家族中231个的候选免疫蛋白。我们使用了敏感的基于结构的注释,为51%的T6E家族提供了功能注释,再次优于基于序列的注释。接下来,我们在大肠杆菌中使用基础实验验证了四种新型T6E免疫对。特别是,我们表明Pfam结构域DUF3289是ColicinM的同源物,DUF943充当其同源免疫蛋白。此外,我们发现了一种新的T6E,它是SleB的结构同源物,裂解性转糖基酶,并确定了一种特定的谷氨酸盐作为其推定的催化残基。总的来说,这项研究将新的结构生物信息学工具应用于T6E-免疫对的发现,并提供了带注释的T6E免疫对的广泛数据库。
    The type VI secretion system (T6SS) is an important mediator of microbe-microbe and microbe-host interactions. Gram-negative bacteria use the T6SS to inject T6SS effectors (T6Es), which are usually proteins with toxic activity, into neighboring cells. Antibacterial effectors have cognate immunity proteins that neutralize self-intoxication. Here, we applied novel structural bioinformatic tools to perform systematic discovery and functional annotation of T6Es and their cognate immunity proteins from a dataset of 17,920 T6SS-encoding bacterial genomes. Using structural clustering, we identified 517 putative T6E families, outperforming sequence-based clustering. We developed a logistic regression model to reliably quantify protein-protein interaction of new T6E-immunity pairs, yielding candidate immunity proteins for 231 out of the 517 T6E families. We used sensitive structure-based annotation which yielded functional annotations for 51% of the T6E families, again outperforming sequence-based annotation. Next, we validated four novel T6E-immunity pairs using basic experiments in E. coli. In particular, we showed that the Pfam domain DUF3289 is a homolog of Colicin M and that DUF943 acts as its cognate immunity protein. Furthermore, we discovered a novel T6E that is a structural homolog of SleB, a lytic transglycosylase, and identified a specific glutamate that acts as its putative catalytic residue. Overall, this study applies novel structural bioinformatic tools to T6E-immunity pair discovery, and provides an extensive database of annotated T6E-immunity pairs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    NLRP1是一种先天免疫受体,可检测病原体相关信号,组装成一种称为炎性体的多蛋白结构,并引发一种称为焦亡的促炎细胞死亡。我们以前发现氧化的,但不是减少的,硫氧还蛋白-1的形式直接与NLRP1结合并抑制炎症小体的形成。然而,NLRP1仅与TRX1的氧化形式选择性缔合的分子基础尚未确定。这里,我们利用AlphaFold-Multimer,定点诱变,硫醇捕集实验,和质谱显示NLRP1上的特定半胱氨酸残基(人类中的C427)与氧化的TRX1形成瞬时二硫键。总的来说,这项工作展示了NLRP1如何监测细胞氧化还原状态,进一步阐明了细胞内氧化还原电位和先天免疫系统之间的意想不到的联系。
    NLRP1 is an innate immune receptor that detects pathogen-associated signals, assembles into a multiprotein structure called an inflammasome, and triggers a proinflammatory form of cell death called pyroptosis. We previously discovered that the oxidized, but not the reduced, form of thioredoxin-1 directly binds to NLRP1 and represses inflammasome formation. However, the molecular basis for NLRP1\'s selective association with only the oxidized form of TRX1 has not yet been established. Here, we leveraged AlphaFold-Multimer, site-directed mutagenesis, thiol-trapping experiments, and mass spectrometry to reveal that a specific cysteine residue (C427 in humans) on NLRP1 forms a transient disulfide bond with oxidized TRX1. Overall, this work demonstrates how NLRP1 monitors the cellular redox state, further illuminating an unexpected connection between the intracellular redox potential and the innate immune system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    RNA解旋酶协调校对机制,促进从pre-mRNA中准确去除内含子。如何将这些活性募集到剪接体/mRNA前体复合物中仍然知之甚少。在本期《基因与发育》中,张及其同事(pp.968-983)将生化实验与基于AI的结构预测方法相结合,以生成SF3B1之间相互作用的模型,SF3B1是识别内含子分支点必不可少的核心剪接因子,和SUGP1,一种将SF3B1与解旋酶DHX15桥接的蛋白质。与SF3B1的相互作用暴露SUGP1的G-patch结构域,促进与DHX15的结合和激活。该模型可以解释癌症中常见的SF3B1或SUGP1突变诱导的隐蔽3'剪接位点的激活。
    RNA helicases orchestrate proofreading mechanisms that facilitate accurate intron removal from pre-mRNAs. How these activities are recruited to spliceosome/pre-mRNA complexes remains poorly understood. In this issue of Genes & Development, Zhang and colleagues (pp. 968-983) combine biochemical experiments with AI-based structure prediction methods to generate a model for the interaction between SF3B1, a core splicing factor essential for the recognition of the intron branchpoint, and SUGP1, a protein that bridges SF3B1 with the helicase DHX15. Interaction with SF3B1 exposes the G-patch domain of SUGP1, facilitating binding to and activation of DHX15. The model can explain the activation of cryptic 3\' splice sites induced by mutations in SF3B1 or SUGP1 frequently found in cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    剪接体基因SF3B1在癌症中经常发生突变。虽然已知SF3B1热点突变导致剪接体中剪接因子SUGP1的丢失,尚未表征与癌症相关的SF3B1-SUGP1相互作用。为了解决这个问题,我们通过结构建模表明,SUGP1G补丁侧翼的两个区域与SF3B1具有热点突变的区域进行了大量接触。实验证实这些区域的所有癌症相关突变,以及影响SF3B1-SUGP1界面中其他残基的突变,不仅削弱或破坏相互作用,而且与SF3B1癌症突变类似地改变剪接。最后,三聚体蛋白质复合物的结构建模表明,SF3B1-SUGP1相互作用“循环出”与解旋酶DHX15相互作用的G补丁。因此,我们的研究提供了对精确剪接至关重要的蛋白质复合物的前所未有的分子观点,并且还揭示了许多与癌症相关的突变破坏了关键的SF3B1-SUGP1相互作用。
    The spliceosomal gene SF3B1 is frequently mutated in cancer. While it is known that SF3B1 hotspot mutations lead to loss of splicing factor SUGP1 from spliceosomes, the cancer-relevant SF3B1-SUGP1 interaction has not been characterized. To address this issue, we show by structural modeling that two regions flanking the SUGP1 G-patch make numerous contacts with the region of SF3B1 harboring hotspot mutations. Experiments confirmed that all the cancer-associated mutations in these regions, as well as mutations affecting other residues in the SF3B1-SUGP1 interface, not only weaken or disrupt the interaction but also alter splicing similarly to SF3B1 cancer mutations. Finally, structural modeling of a trimeric protein complex reveals that the SF3B1-SUGP1 interaction \"loops out\" the G-patch for interaction with the helicase DHX15. Our study thus provides an unprecedented molecular view of a protein complex essential for accurate splicing and also reveals that numerous cancer-associated mutations disrupt the critical SF3B1-SUGP1 interaction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质通常作为永久或瞬时多聚体复合物的一部分,理解这些组件的功能需要了解它们的三维结构。虽然AlphaFold以前所未有的准确性预测单个蛋白质结构的能力彻底改变了结构生物学,蛋白质组件的建模结构仍然具有挑战性。为了应对这一挑战,我们开发了一种预测蛋白质复合物结构的方案,该方案包括模型采样,然后对亚基-亚基相互作用界面进行评分.在这个协议中,我们通过改变多个序列比对的构建和配对以及增加再循环的数量来使AlphaFold模型多样化。如果AlphaFold未能组装完整的蛋白质复合物或产生不可靠的结果,通过对接单体或亚复合物构建了其他不同的模型。然后使用新开发的方法对所有模型进行评分,VoroIF-陪审团,只依赖于结构信息。值得注意的是,VoroIF-jury独立于AlphaFold自我评估分数,因此可用于对源自不同结构预测方法的模型进行排名。我们在CASP15中测试了我们的协议,并获得了最高结果,显著优于标准AlphaFold-Multimer管道。对我们的结果表明,我们的装配模型的准确性主要受到结构采样而不是模型评分的限制。这一观察表明,更好的采样,尤其是抗体-抗原复合物,可能会导致进一步的改善。我们的方案预计可用于蛋白质组件的建模和/或评分。
    Proteins often function as part of permanent or transient multimeric complexes, and understanding function of these assemblies requires knowledge of their three-dimensional structures. While the ability of AlphaFold to predict structures of individual proteins with unprecedented accuracy has revolutionized structural biology, modeling structures of protein assemblies remains challenging. To address this challenge, we developed a protocol for predicting structures of protein complexes involving model sampling followed by scoring focused on the subunit-subunit interaction interface. In this protocol, we diversified AlphaFold models by varying construction and pairing of multiple sequence alignments as well as increasing the number of recycles. In cases when AlphaFold failed to assemble a full protein complex or produced unreliable results, additional diverse models were constructed by docking of monomers or subcomplexes. All the models were then scored using a newly developed method, VoroIF-jury, which relies only on structural information. Notably, VoroIF-jury is independent of AlphaFold self-assessment scores and therefore can be used to rank models originating from different structure prediction methods. We tested our protocol in CASP15 and obtained top results, significantly outperforming the standard AlphaFold-Multimer pipeline. Analysis of our results showed that the accuracy of our assembly models was capped mainly by structure sampling rather than model scoring. This observation suggests that better sampling, especially for the antibody-antigen complexes, may lead to further improvement. Our protocol is expected to be useful for modeling and/or scoring protein assemblies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    AlphaFold-Multimer大大提高了蛋白质复合物结构的预测,但其准确性还取决于由预测下的复合物的相互作用同源物(即互系物)形成的多序列比对(MSA)的质量。在这里,我们提出了一种新的方法,ESMPair,可以使用蛋白质语言模型识别复合体的互系物。我们证明了ESMPair可以比AlphaFold-Multimer中的默认MSA生成方法生成更好的interologs。我们的方法导致比AlphaFold-Multimer更好的复杂结构预测(就前5名最佳DockQ而言,为10.7%),特别是当预测的复杂结构具有低置信度时。我们进一步证明,通过结合几种MSA生成方法,我们可能会产生比Alphafold-Multimer更好的复杂结构预测精度(就前5名最佳DockQ而言,为22%)。通过对算法的影响因素进行系统分析,发现interologsMSA的多样性显著影响预测精度。此外,我们表明ESMPair在真核生物中的复合物上表现特别好。
    AlphaFold-Multimer has greatly improved the protein complex structure prediction, but its accuracy also depends on the quality of the multiple sequence alignment (MSA) formed by the interacting homologs (i.e. interologs) of the complex under prediction. Here we propose a novel method, ESMPair, that can identify interologs of a complex using protein language models. We show that ESMPair can generate better interologs than the default MSA generation method in AlphaFold-Multimer. Our method results in better complex structure prediction than AlphaFold-Multimer by a large margin (+10.7% in terms of the Top-5 best DockQ), especially when the predicted complex structures have low confidence. We further show that by combining several MSA generation methods, we may yield even better complex structure prediction accuracy than Alphafold-Multimer (+22% in terms of the Top-5 best DockQ). By systematically analyzing the impact factors of our algorithm we find that the diversity of MSA of interologs significantly affects the prediction accuracy. Moreover, we show that ESMPair performs particularly well on complexes in eucaryotes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    使用人工智能对蛋白质及其复合物的结构进行精确建模正在彻底改变分子生物学。实验数据使基于候选的方法能够系统地模拟新型蛋白质组装体。这里,我们使用细胞内交联质谱和共分级分离质谱(CoFrac-MS)的组合来鉴定模型革兰氏阳性细菌枯草芽孢杆菌中的蛋白质-蛋白质相互作用.我们表明,细胞裂解前的交联相互作用揭示了通常在细胞裂解时丢失的蛋白质相互作用。我们用AlphaFold-Multimer和SubtiWiki数据库预测这些蛋白质相互作用的结构,在控制预测的假阳性率后,我们提出了153个二聚体和14个三聚体蛋白质组件的新结构模型。交联MS数据独立地验证AlphaFold预测和评分。我们报告并验证了包括核糖体在内的中央细胞机制的新型相互作用者,RNA聚合酶,和丙酮酸脱氢酶,将功能分配给几种未表征的蛋白质。我们的方法揭示了完整细胞内的蛋白质-蛋白质相互作用,提供对它们交互界面的结构洞察,适用于遗传上难以处理的生物,包括致病菌。
    Accurately modeling the structures of proteins and their complexes using artificial intelligence is revolutionizing molecular biology. Experimental data enable a candidate-based approach to systematically model novel protein assemblies. Here, we use a combination of in-cell crosslinking mass spectrometry and co-fractionation mass spectrometry (CoFrac-MS) to identify protein-protein interactions in the model Gram-positive bacterium Bacillus subtilis. We show that crosslinking interactions prior to cell lysis reveals protein interactions that are often lost upon cell lysis. We predict the structures of these protein interactions and others in the SubtiWiki database with AlphaFold-Multimer and, after controlling for the false-positive rate of the predictions, we propose novel structural models of 153 dimeric and 14 trimeric protein assemblies. Crosslinking MS data independently validates the AlphaFold predictions and scoring. We report and validate novel interactors of central cellular machineries that include the ribosome, RNA polymerase, and pyruvate dehydrogenase, assigning function to several uncharacterized proteins. Our approach uncovers protein-protein interactions inside intact cells, provides structural insight into their interaction interfaces, and is applicable to genetically intractable organisms, including pathogenic bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    固有无序蛋白质(IDP)是一类蛋白质,其中蛋白质的至少一些区域在生理条件下在溶液中不具有任何稳定结构,但在与球状受体结合时可以采用有序结构。因此,这些IDP-受体复合物经受蛋白质复合物建模,其中应用计算技术来准确地再现IDP配体-受体相互作用。这通常以蛋白质对接的形式存在,其中两个亚基的3D结构是已知的,但配体相对于受体的位置不是。这里,我们评估了三种IDP-受体建模工具的性能,这些工具在各种分辨率下表征了IDP-受体界面的指标.我们表明,所有三种方法都能够正确识别一般结合位点,如较低分辨率度量所标识的,但开始与捕获生物物理相互作用的更高分辨率指标斗争。
    Intrinsically Disordered Proteins (IDPs) are a class of proteins in which at least some region of the protein does not possess any stable structure in solution in the physiological condition but may adopt an ordered structure upon binding to a globular receptor. These IDP-receptor complexes are thus subject to protein complex modeling in which computational techniques are applied to accurately reproduce the IDP ligand-receptor interactions. This often exists in the form of protein docking, in which the 3D structures of both the subunits are known, but the position of the ligand relative to the receptor is not. Here, we evaluate the performance of three IDP-receptor modeling tools with metrics that characterize the IDP-receptor interface at various resolutions. We show that all three methods are able to properly identify the general binding site, as identified by lower resolution metrics, but begin to struggle with higher resolution metrics that capture biophysical interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号