Adsorption

吸附
  • 文章类型: Journal Article
    The interaction between nanoscale copper oxides (nano-CuOs) and soil matrix significantly affects their fate and transport in soils. This study investigates the retention of nano-CuOs and Cu2+ ions in ten typical agricultural soils by employing the Freundlich adsorption model. Retention of nano-CuOs and Cu2+ in soils was well fitted by the Freundlich model. The retention parameters (KD, KF, and N) followed an order of CuO NTs > CuO NPs > Cu2+, highlighting significant impact of nano-CuOs morphology. The KF and N values of CuO NPs/Cu2+ were positively correlated with soil pH and electrical conductivity (EC), but exhibited a weaker correlation for CuO NTs. Soil pH and/or EC could be used to predict KF and N values of CuO NPs or CuO NTs, with additional clay content should be included for Cu2+.The different relationship between retention parameters and soil properties may suggest that CuO NTs retention mainly caused by agglomeration, whereas adsorption and agglomeration were of equal importance to CuO NPs. The amendment of Ca2+ at low and medium concentration promoted retention of nano-CuOs in alkaline soils, but reduced at high concentration. These findings provided critical insights into the fate of nano-CuOs in soil environments, with significant implications for environmental risk assessment and soil remediation strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Methyl mercaptan is a typical volatile organosulfur pollutant contained in many gases emitted by urban waste treatment, various industries, natural gas handling, refining processes, and energy production. This work is a comprehensive overview of the scientific and practical aspects related to the management of methyl mercaptan pollution. The main techniques, including absorption, adsorption, oxidation, and biological treatments, are examined in detail. For each method, its capability as well as the technical advantages and drawbacks have been highlighted. The emerging methods developed for the removal of methyl mercaptan from natural gas are also reviewed. These methods are based on the catalytic conversion of CH3SH to hydrocarbons and H2S.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    This study reports the production of biochar adsorbents from two major crop residues (i.e., rice and wheat straw) to remove naphthenic acids from water. The alkali treatment approach was used for biochar activation that resulted in a tremendous increase in their surface area, i.e., up to 2252 and 2314 m2/g, respectively, for rice and wheat straw biochars. Benzoic acid was used as a model compound to optimize critical adsorption parameters. Its maximum monolayer adsorption capacity of 459.55 and 357.64 mg/g was achieved for activated rice and wheat straw biochars. The adsorption of benzoic acid was exothermic (∆H° =  - 7.06 and - 3.89 kJ/mol) and identified possibly as physisorption (Gibbs free energy ranges 3.5-4.0 kJ/mol). The kinetic study suggested that adsorption follows pseudo-second-order kinetics with qe2 for rice straw and wheat straw-derived adsorbents at 200 and 194 mg/g, respectively. As adsorbent, the recyclability of activated biochars was noticed with no significant loss in their efficiency for up to ten successive regeneration cycles. The adsorption results were validated using a commercial naphthenic acid mixture-spiked river water and paper/pulp industrial effluent. The activated rice and wheat straw biochars exhibited excellent adsorption efficiency of 130.3 and 74.6 mg/g, respectively. The naphthenic acid adsorption on biochar surface was due to various interactions, i.e., weak van der Waal\'s, pore filling, π-π stacking, and ionic interactions. This study offers a cost-effective and eco-friendly approach to valorizing agricultural residues for pollutant removal from industrial wastewater, including petroleum refineries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Phosphorus (P) scarcity and eutrophication have triggered the development of new materials for P recovery. In this work, a novel magnetic calcium-rich biochar nanocomposite (MCRB) was prepared through co-precipitation of crab shell derived biochar, Fe2+ and Fe3+. Characteristics of the material demonstrated that the MCRB was rich in calcite and that the Fe3O4 NPs with a diameter range of 18-22 nanometers were uniformly adhered on the biochar surface by strong ether linking (C-O-Fe). Batch tests demonstrated that the removal of P was pH dependent with an optimal pH of 3-7. The MCRB exhibited a superior P removal performance, with a maximum removal capacity of 105.6 mg g-1, which was even higher than the majority lanthanum containing compounds. Study of the removal mechanisms revealed that the P removal by MCRB involved the formation of hydroxyapatite (HAP-Ca5(PO4)3OH), electrostatic attraction and ligand exchange. The recyclability test demonstrated that a certain level (approximately 60%) was still maintained even after the six adsorption-desorption process, suggesting that MCRB is a promising material for P removal from wastewater.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Hydroquinone (HQ) in wastewater is of great concern, as it is harmful to human health and threatens the ecological environment. However, the existing adsorbents have low adsorption capacity for HQ. To improve the removal of HQ, N,S-codoped activated carbon-ZIF-67 (NSAC-ZIF-67@C) was synthesized in this study by in situ growth of ZIF-67 on N,S-codoped activated carbon (NSAC) and carbonization. The influence of pH, contact time, and initial concentration on the adsorption behaviors of NSAC-ZIF-67@C on HQ were investigated. Owing to the synergistic effect of abundant active sites and well-developed pore structure, the NSAC-ZIF-67@C achieved a prominent adsorption capacity of 962 mg·g-1 and can still retain high adsorption performance after 5 cycles for HQ, which is superior to that of reported other adsorbents. HQ adsorption follows the pseudo-second-order kinetics model (R2 = 0.99999) and the Freundlich isotherm model. X-ray photoelectron spectroscopy (XPS) analysis before and after adsorption as well as density functional theory (DFT) calculation results showed that pyridinic-N-termini were conducive to the π-π interactions and hydrogen-bonding interactions. Therefore, the adsorption mechanisms of NSAC-ZIF-67@C on HQ involve pore filling, electrostatic attraction, π-π interaction, and hydrogen bonding. This study is expected to provide a reference for designing highly effective adsorbents for wastewater treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Soil-bentonite (S-B) barriers have been widely used for heavy metal pollution containment. This study conducted batch adsorption tests and diffusion-through tests to evaluate how ionic strength and bentonite ratio influence the migration of Cr(VI) in natural clay-bentonite mixtures. The test results indicated that the adsorption of Cr(VI) exhibited an obvious anion adsorption effect, the pH of the soil mixture increased with the addition of bentonite, resulting in a decrease in the positive surface charge. This change led to a decrease in Cr(VI) adsorption capacity, from 775.19 mg/kg for pure clay to 378 mg/kg for mixture samples with excessive bentonite. Furthermore, as the ionic strength increases from 0 to 0.1 M, the Cr(VI) adsorption capacity increases slightly due to the weakening of electrostatic repulsion on the clay particle surface, but the effective diffusion coefficient (De) increases by 21.97%. The compression of the diffusion double layer (DDL) under high ionic strength conditions enlarges the diffusion path and enhances the migration of Cr(VI) through the pore flow paths. Moreover, hydrated bentonite effectively fills the interaggregate pores of natural clay, thus creating narrower and more tortuous flow paths. However, excessive bentonite increases the pH value and pore volume, resulting in changes to the soil microstructure and disrupting the continuous skeleton of natural clay, which is unfavorable for Cr(VI) containment. Based on the study of the Cr(VI) contaminated site, a bentonite ratio of 2:10 is recommended for optimal natural performance of the natural clay-bentonite barrier.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    This study investigates the corrosion inhibition potential of Polygonum cuspidatum root extract (PCRE) on mild steel in a 0.5 M HCl acidic environment. Herein, various techniques including electrochemical and gravimetric measurements were employed, along with scanning electron microscopy (SEM) and contact angle (CA) measurements for surface morphology analysis. The impedance study revealed a concentration-dependent enhancement in corrosion resistance, classifying PCRE as a mixed-type inhibitor (i.e., inhibits both anodic and cathodic reactions). The highest efficiency, 96.71% at 298 K, was observed at a 1000-ppm PCRE concentration. Langmuir model computations suggested chemisorption and physisorption of PCRE on the electrode substrate. Increased Rp (from 28.648 to 174.01 Ω) and Rct (185.74 Ω cm2) at 1000 ppm demonstrated improved corrosion resistance. Additionally, SEM analysis displayed a uniform, protective surface, reducing metal degradation. Theoretical calculations highlighted strong interactions between PCRE and mild steel, with a low energy gap (ΔE), as follows: 1-O-methylemodin (2.267 eV) < emodin (2.288 eV) < emodin-1-O-glucoside (2.343 eV) < piceid (2.931 eV) < resveratrol (2.952 eV), confirming PCRE\'s excellent micro-level anti-corrosion capabilities. This eco-benign corrosion inhibitor offers sustainable, low-toxicity protection, cost-effectiveness, and versatile performance, surpassing commercial counterparts while aligning with sustainability goals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The plastisphere is the microbial communities that grow on the surface of plastic debris, often used interchangeably with plastic biofilm or biofouled plastics. It can affect the properties of the plastic debris in multiple ways. This review aims to present the effects of the plastisphere on the physicochemical properties of microplastics systematically. It highlights that the plastisphere modifies the buoyancy and movement of microplastics by increasing their density, causing them to sink and settle out. Smaller and film microplastics are likely to settle sooner because of larger surface areas and higher rates of biofouling. Biofouled microplastics may show an oscillating movement in waterbodies when settling due to diurnal and seasonal changes in the growth of the plastisphere until they come close to the bottom of the waterbodies and are entrapped by sediments. The plastisphere enhances the adsorption of microplastics for metals and organic pollutants and shifts the adsorption mechanism from intraparticle diffusion to film diffusion. The plastisphere also increases surface roughness, reduces the pore size, and alters the overall charge of microplastics. Charge alteration is primarily attributed to changes in the functional groups on microplastic surfaces. The plastisphere introduces carbonyl, amine, amide, hydroxyl, and phosphoryl groups to microplastics, causing an increase in their surface hydrophilicity, which could alter their adsorption behaviors for heavy metals. The plastisphere may act as a reactive barrier that enhances the leaching of polar additives. It may anchor bacteria that can break down plastic additives, resulting in decreased crystallinity of microplastics. This review contributes to a better understanding of how the plastisphere alters the fate, transport, and environmental impacts of microplastics. It points to the possibility of engineering the plastisphere to improve microplastic biodegradation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    BACKGROUND: For the first time, the use of monocyclic rings C18 and B9N9 as sensors for the sensing of carbazole-based anti-cancer drugs, such as tetrahydrocarbazole (THC), mukonal (MKN), murrayanine (MRY), and ellipticine (EPT), is described using DFT simulations and computational characterization. The geometries, electronic properties, stability studies, sensitivity, and adsorption capabilities of C18 and B9N9 counterparts towards the selected compounds confirm that the analytes interact through active cavities of the C18 and B9N9 rings of the complexes.
    METHODS: Based on the interaction energies, the sensitivity of surfaces towards EPT, MKN, MRY, and THC analytes is observed. The interaction energy of EPT@B9N9, MKN@B9N9, MRY@B9N9, and THC@B9N9 complexes are observed - 20.40, - 19.49, - 20.07, and - 18.27 kcal/mol respectively which is more exothermic than EPT@C18, MKN@C18, MRY@C18, and THC@C18 complexes are - 16.37, - 13.97, - 13.96, and - 11.39 kcal/mol respectively. According to findings from the quantum theory of atoms in molecules (QTAIM) and the reduced density gradient (RDG), dispersion forces play a significant role in maintaining the stability of these complexes. The electronic properties including FMOs, density of states (DOS), natural bond orbitals (NBO), charge transfer, and absorption studies are carried out. In comparison of B9N9 and C18, the analyte recovery time for C18 is much shorter (9.91 × 10-11 for THC@C18) than that for B9N9 shorter recovery time value of 3.75 × 10-9 for EPT@B9N9. These results suggest that our reported sensors B9N9 and C18 make it faster to detect adsorbed molecules at room temperature. The sensor response is more prominent in B9N9 due to its fine energy gap and high adsorption energy. Consequently, it is possible to think of these monocyclic systems as a potential material for sensor applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The most prominent and easily identifiable factor of water purity is its colour, which may be both physically undesirable, and act as an alert towards potential environmental contamination. The current study describes the optimum synthesis technique for Lemon Peel-Chitosan hydrogel using the Response Surface Methodology integrated Central composite Design (RSM-CCD). This adsorbent is both environmentally friendly and cost-effective. The hydrogel exhibited a maximal dye removal capacity of 24.984, 24.788, 24.862, 23.483, 24.409, and 24.726 mg g-1, for 10 mg L-1 aqueous medium of Safranin O, Methylene blue, Basic fuchsin, Toluidine blue, Brilliant green and Crystal violet, respectively. The adsorption kinetics and isotherm data suggest that the Pseudo second-order kinetic and Freundlich adsorption isotherm models precisely represent the respective behaviour of all the dyes. The thermodynamic viability of the process is determined by the values of ΔG, ΔH, and ΔS. The probable mechanism of adsorption was the electrostatic interaction between the dye molecules and the hydrogel. The regenerated hydrogel had removal efficiencies of over 80 % even after enduring six cycles. Hence, the exceptional recyclability and utility of the adsorbent show their sustainability for wastewater treatment in textile factories.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号