Adipose tissue plasticity

  • 文章类型: Journal Article
    细胞更新是组织稳态和完整性的基础。脂肪细胞周转,占人类细胞总质量更新的4%,在代谢应激期间对脂肪组织稳态至关重要。在肥胖症中,改变的脂肪组织微环境促进脂肪细胞死亡.为了清除死亡的脂肪细胞,巨噬细胞被招募并形成称为冠状结构的独特结构;随后,新的脂肪细胞从脂肪生成生态位中的脂肪干细胞和祖细胞产生,以替代死亡的脂肪细胞。越来越多的证据表明脂肪细胞死亡,间隙,在脂肪细胞周转过程中,脂肪生成是复杂的。在这篇评论中,我们总结了我们目前对脂肪细胞周转每个步骤的理解,讨论其主要参与者和监管机制。
    Cellular turnover is fundamental for tissue homeostasis and integrity. Adipocyte turnover, accounting for 4% of the total cellular mass turnover in humans, is essential for adipose tissue homeostasis during metabolic stress. In obesity, an altered adipose tissue microenvironment promotes adipocyte death. To clear dead adipocytes, macrophages are recruited and form a distinctive structure known as crown-like structure; subsequently, new adipocytes are generated from adipose stem and progenitor cells in the adipogenic niche to replace dead adipocytes. Accumulating evidence indicates that adipocyte death, clearance, and adipogenesis are sophisticatedly orchestrated during adipocyte turnover. In this Review, we summarize our current understandings of each step in adipocyte turnover, discussing its key players and regulatory mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脂肪组织是高度可塑性的,主要通过白色脂肪细胞转分化为米色脂肪细胞来说明,取决于环境条件。然而,在啮齿动物的妊娠和哺乳期,皮下脂肪组织转化为乳腺组织的惊人现象,被称为粉红色脂肪组织,能够合成和分泌牛奶。最近使用转基因谱系追踪实验的工作,主要在SaverioCinti的团队中进行,非常令人信服地证明,该过程确实对应于妊娠和哺乳期间白色脂肪细胞向乳腺肺泡细胞(粉红色脂肪细胞)的转分化。这种现象是可逆的,因为在哺乳后阶段,粉红色脂肪细胞恢复为白色脂肪细胞表型。这种可逆转分化的分子机制仍然知之甚少。
    Adipose tissue is highly plastic, as illustrated mainly by the transdifferentiation of white adipocytes into beige adipocytes, depending on environmental conditions. However, during gestation and lactation in rodent, there is an amazing phenomenon of transformation of subcutaneous adipose tissue into mammary glandular tissue, known as pink adipose tissue, capable of synthesizing and secreting milk. Recent work using transgenic lineage-tracing experiments, mainly carried out in Saverio Cinti\'s team, has demonstrated very convincingly that this process does indeed correspond to a transdifferentiation of white adipocytes into mammary alveolar cells (pink adipocytes) during gestation and lactation. This phenomenon is reversible, since during the post-lactation phase, pink adipocytes revert to the white adipocyte phenotype. The molecular mechanisms underlying this reversible transdifferentiation remain poorly understood.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    除了主要的皮下和内脏脂肪组织(AT),其他脂肪库分散在整个身体,并发现与近端器官如乳腺和前列腺周围的AT(分别为MAT和PPAT)密切相互作用。这些ATs在生理过程和诸如癌症的疾病期间对近端器官功能有影响。我们在这里强调了它们在组织组织和对外部刺激的反应方面的一些最鲜明的特征,并根据我们目前的知识讨论了肥胖如何影响它们。
    In addition to the major subcutaneous and visceral adipose tissues (AT), other adipose depots are dispersed throughout the body and are found in close interaction with proximal organs such as mammary and periprostatic AT (MAT and PPAT respectively). These ATs have an effect on proximal organ function during physiological processes and diseases such as cancer. We highlighted here some of their most distinctive features in terms of tissular organization and responses to external stimuli and discussed how obesity affects them based on our current knowledge.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脂肪组织表现出显著的可塑性,具有在生理和病理生理条件下改变大小和细胞组成的能力。单细胞转录组学的出现迅速改变了我们对脂肪组织中各种细胞类型和细胞状态的理解,并提供了对单个细胞类型的转录变化如何有助于组织可塑性的见解。这里,我们对脂肪组织的细胞图谱进行了全面的概述,重点是从鼠和人类脂肪组织的单细胞和单核转录组学中获得的生物学见解。我们还提供了我们对映射细胞过渡和串扰的令人兴奋的机会的观点,这是通过单细胞技术实现的。
    Adipose tissue exhibits remarkable plasticity with capacity to change in size and cellular composition under physiological and pathophysiological conditions. The emergence of single-cell transcriptomics has rapidly transformed our understanding of the diverse array of cell types and cell states residing in adipose tissues and has provided insight into how transcriptional changes in individual cell types contribute to tissue plasticity. Here, we present a comprehensive overview of the cellular atlas of adipose tissues focusing on the biological insight gained from single-cell and single-nuclei transcriptomics of murine and human adipose tissues. We also offer our perspective on the exciting opportunities for mapping cellular transitions and crosstalk, which have been made possible by single-cell technologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Adipose tissues display a remarkable ability to adapt to the dietary status. Here, we have applied single-nucleus RNA-seq to map the plasticity of mouse epididymal white adipose tissue at single-nucleus resolution in response to high-fat-diet-induced obesity. The single-nucleus approach allowed us to recover all major cell types and to reveal distinct transcriptional stages along the entire adipogenic trajectory from preadipocyte commitment to mature adipocytes. We demonstrate the existence of different adipocyte subpopulations and show that obesity leads to disappearance of the lipogenic subpopulation and increased abundance of the stressed lipid-scavenging subpopulation. Moreover, obesity is associated with major changes in the abundance and gene expression of other cell populations, including a dramatic increase in lipid-handling genes in macrophages at the expense of macrophage-specific genes. The data provide a powerful resource for future hypothesis-driven investigations of the mechanisms of adipocyte differentiation and adipose tissue plasticity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    To determine the role of enterokine FGF15/19 in adipose tissue thermogenic adaptations.
    Circulating FGF19 and gene expression (qRT-PCR) levels were assessed in subcutaneous adipose tissue from obese human patients. Effects of experimentally increased FGF15 and FGF19 levels in vivo were determined in mice using adenoviral and adeno-associated vectors. Adipose tissues were characterized in FGF15-null mice under distinct cold-related thermogenic challenges. The analyses spanned metabolic profiling, tissue characterization, histology, gene expression, and immunoblot assays.
    In humans, FGF19 levels are directly associated with UCP1 gene expression in subcutaneous adipose tissue. Experimental increases in FGF15 or FGF19 induced white fat browning in mice as demonstrated by the appearance of multilocular beige cells and markers indicative of a beige phenotype, including increased UCP1 protein levels. Mice lacking FGF15 showed markedly impaired white adipose tissue browning and a mild reduction in parameters indicative of BAT activity in response to cold-induced environmental thermogenic challenges. This was concomitant with signs of altered systemic metabolism, such as reduced glucose tolerance and impaired cold-induced insulin sensitization.
    Enterokine FGF15/19 is a key factor required for adipose tissue plasticity in response to thermogenic adaptations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The white adipose tissue (WAT) exhibits great plasticity and can undergo \"browning\" and acquire features of the brown adipose tissue (BAT), which takes place following cold exposure, chronic endurance exercise or β3-adrenergic stimulation. WAT that underwent browning is characterized by the presence of \"beige\" adipocytes, which are morphologically similar to brown adipocytes, express uncoupling protein 1 (UCP1) and are considered thermogenically competent. Thus, inducing a BAT-like phenotype in the WAT could promote energy dissipation within this depot, reducing the availability of substrate that would otherwise be stored in the WAT. Importantly, BAT in humans only represents a small proportion of total body mass, which limits the thermogenic capacity of this tissue. Therefore, browning of the WAT could significantly expand the energy-dissipating capacity of the organism and be of therapeutic value in the treatment of metabolic diseases. However, the question remains as to whether WAT indeed changes its metabolic profile from an essentially fat storage/release compartment to an energy dissipating compartment that functions much like BAT. Here, we discuss the differences with respect to thermogenic capacity and metabolic characteristics between white and beige adipocytes to determine whether the latter cells indeed significantly enhance their capacity to dissipate energy through UCP1-mediated mitochondrial uncoupling or by the activation of alternative UCP1-independent futile cycles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The worldwide epidemic of obesity and metabolic disorders is focusing the attention of the scientific community on white adipose tissue (WAT) and its biology. This tissue is characterized not only by its capability to change in size and shape but also by its heterogeneity and versatility. WAT can be converted into brown fat-like tissue according to different physiological and pathophysiological situations. The expression of uncoupling protein-1 in brown-like adipocytes changes their function from energy storage to energy dissipation. This plasticity, named browning, was recently rediscovered and convergent recent accounts, including in humans, have revived the idea of using these oxidative cells to fight against metabolic diseases. Furthermore, recent reports suggest that, beside the increased energy dissipation and thermogenesis that may have adverse effects in situations such as cancer-associated cachexia and massive burns, browning could be also considered as an adaptive stress response to high redox pressure and to major stress that could help to maintain tissue homeostasis and integrity. The aim of this review is to summarize the current knowledge concerning brown adipocytes and the browning process and also to explore unexpected putative role(s) for these cells. While it is important to find new browning inducers to limit energy stores and metabolic diseases, it also appears crucial to develop new browning inhibitors to limit adverse energy dissipation in wasting-associated syndromes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Adipocyte progenitors are thought to play a fundamental role in white adipose tissue (WAT) plasticity, which enables dynamic modulation of WAT metabolic and cellular characteristics in response to various stimuli. In general, two main strategies have been used to identify adipocyte progenitor cells: fluorescence-activated cell sorting (FACS)-based prospective analysis and lineage tracing. Although FACS-isolation is highly useful in defining multipotential stem cell populations for in vitro analysis and transplantation, lineage tracing is essential to identify endogenous progenitors that do, in fact, differentiate into adipocytes in vivo. Our recent lineage tracing studies have shown that cells expressing the surface marker platelet-derived growth factor receptor α (PDGFRα) give rise to white and brown adipocytes in adult WAT, depending on inductive cues. PDGFRα+ cells are a subpopulation of those expressing CD34 and Sca1, and have unique morphology whereby long dendritic processes contact numerous cell types in the microenvironment. The significant contribution of PDGFRα+ cells to browning and hyperplastic expansion of WAT leads us to propose that PDGFRα+ cells are remodeling stem cells in adult WAT. Application of advanced imaging technology and genetic tools to this progenitor population will allow greater understanding of cellular plasticity in adipose tissue.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号