Actin cytoskeleton

肌动蛋白细胞骨架
  • 文章类型: Journal Article
    连接蛋白(Cxs)是组装成间隙连接通道(GJC)和半通道(HC)的跨膜蛋白。以前的研究支持RhoGTP酶和肌动蛋白微丝参与Cxs的贩运,GJCs斑块的形成,和渠道活动的调节。尽管如此,不同类型的CxsHCs和GJCs对RhoGTP酶的反应是否不同或肌动蛋白聚合/解聚动力学的变化仍不确定。我们的调查显示抑制RhoA,一种控制肌动蛋白聚合的小GTP酶,或用细胞松弛素B(Cyto-B)破坏肌动蛋白微丝,导致在并置膜处的GJCs斑块大小减小,并增加了HC向非并置质膜区域的转运。值得注意的是,这些影响在不同的Cx类型中是一致的,由于Cx26和Cx43表现出相似的反应,尽管有不同的运输途径到质膜。功能评估显示RhoA抑制和肌动蛋白解聚降低Cx43GJCs的活性,同时显著增加HC活性。然而,GJCs和由Cx26组成的HCs的功能状态未受影响.这些结果支持RhoA,通过它对肌动蛋白细胞骨架的控制,促进HCs运输到并置细胞膜以形成GJCs,同时限制游离HCs在非并置细胞膜上的定位,独立于Cx类型。这种动态调节通过Cx型依赖机制促进细胞间通讯并降低非选择性质膜通透性。其中Cx43HC和GJCs的活性受到差异影响,但Cx26通道保持不变。
    Connexins (Cxs) are transmembrane proteins that assemble into gap junction channels (GJCs) and hemichannels (HCs). Previous researches support the involvement of Rho GTPases and actin microfilaments in the trafficking of Cxs, formation of GJCs plaques, and regulation of channel activity. Nonetheless, it remains uncertain whether distinct types of Cxs HCs and GJCs respond differently to Rho GTPases or changes in actin polymerization/depolymerization dynamics. Our investigation revealed that inhibiting RhoA, a small GTPase that controls actin polymerization, or disrupting actin microfilaments with cytochalasin B (Cyto-B), resulted in reduced GJCs plaque size at appositional membranes and increased transport of HCs to non-appositional plasma membrane regions. Notably, these effects were consistent across different Cx types, since Cx26 and Cx43 exhibited similar responses, despite having distinct trafficking routes to the plasma membrane. Functional assessments showed that RhoA inhibition and actin depolymerization decreased the activity of Cx43 GJCs while significantly increasing HC activity. However, the functional status of GJCs and HCs composed of Cx26 remained unaffected. These results support the hypothesis that RhoA, through its control of the actin cytoskeleton, facilitates the transport of HCs to appositional cell membranes for GJCs formation while simultaneously limiting the positioning of free HCs at non-appositional cell membranes, independently of Cx type. This dynamic regulation promotes intercellular communications and reduces non-selective plasma membrane permeability through a Cx-type dependent mechanism, whereby the activity of Cx43 HCs and GJCs are differentially affected but Cx26 channels remain unchanged.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肌动蛋白细胞骨架是细胞运动中最重要的参与者之一,附着力,司,和功能。特定微丝形成的调节在很大程度上决定了细胞功能。动物细胞中主要的肌动蛋白结合蛋白是原肌球蛋白(Tpm)。微丝的独特结构和功能多样性是通过Tpm同工型的多样性实现的。在我们的工作中,我们研究了细胞质同工型Tpm1.8和Tpm1.9的性质。结果表明,这些同工型具有高度的热稳定性,并且其中心和C末端片段的稳定性不同。这些同工型的性质主要由第6个外显子决定。因此,端到端互动的力量,以及Tpm分子对F-肌动蛋白的亲和力,Tpm1.8和Tpm1.9亚型之间存在差异。它们取决于是否有替代的内部外显子,6a或6b,包含在Tpm同工型结构中。Tpm1.8和Tpm1.9同工型与F-肌动蛋白的强相互作用导致刚性肌动蛋白丝的形成,其刚度是使用光学陷阱测量的。Tpm同工型的结构和功能特征很可能在很大程度上决定了这些同工型在细胞皮层的刚性肌动蛋白结构中的出现。
    The actin cytoskeleton is one of the most important players in cell motility, adhesion, division, and functioning. The regulation of specific microfilament formation largely determines cellular functions. The main actin-binding protein in animal cells is tropomyosin (Tpm). The unique structural and functional diversity of microfilaments is achieved through the diversity of Tpm isoforms. In our work, we studied the properties of the cytoplasmic isoforms Tpm1.8 and Tpm1.9. The results showed that these isoforms are highly thermostable and differ in the stability of their central and C-terminal fragments. The properties of these isoforms were largely determined by the 6th exons. Thus, the strength of the end-to-end interactions, as well as the affinity of the Tpm molecule for F-actin, differed between the Tpm1.8 and Tpm1.9 isoforms. They were determined by whether an alternative internal exon, 6a or 6b, was included in the Tpm isoform structure. The strong interactions of the Tpm1.8 and Tpm1.9 isoforms with F-actin led to the formation of rigid actin filaments, the stiffness of which was measured using an optical trap. It is quite possible that the structural and functional features of the Tpm isoforms largely determine the appearance of these isoforms in the rigid actin structures of the cell cortex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    有丝分裂过程中染色体的精确分离需要组装双极有丝分裂纺锤体,然后将微管正确连接到动体。这种高度时空组织的过程由各种有丝分裂激酶和分子马达控制。我们最近表明,酪蛋白激酶1(CK1)通过磷酸化FAM110A促进有丝分裂的及时进展,从而导致其在纺锤体两极的富集。然而,FAM110A在有丝分裂中发挥作用的机制尚不清楚。使用结构预测和一组缺失突变体,我们在这里绘制了FAM110A的N端和C端结构域与肌动蛋白和微管蛋白的相互作用,分别。接下来,我们发现,缺乏肌动蛋白结合的FAM110A-Δ40-61突变体未能挽救由内源性FAM110A耗尽引起的染色体排列缺陷。FAM110A的消耗损害了纺锤体极附近的F-肌动蛋白的组装,并通过野生型FAM110A的表达得以挽救,但不是FAM110A-Δ40-61突变体。纯化的FAM110A在体外促进F-肌动蛋白与微管的结合以及肌动蛋白丝的成束。最后,我们发现抑制CK1会损害纺锤体肌动蛋白的形成并延迟有丝分裂的进程。我们建议CK1和FAM110A通过介导纺锤体微管和丝状肌动蛋白之间的相互作用来促进有丝分裂的及时进展,以确保适当的有丝分裂纺锤体形成。
    Precise segregation of chromosomes during mitosis requires assembly of a bipolar mitotic spindle followed by correct attachment of microtubules to the kinetochores. This highly spatiotemporally organized process is controlled by various mitotic kinases and molecular motors. We have recently shown that Casein Kinase 1 (CK1) promotes timely progression through mitosis by phosphorylating FAM110A leading to its enrichment at spindle poles. However, the mechanism by which FAM110A exerts its function in mitosis is unknown. Using structure prediction and a set of deletion mutants, we mapped here the interaction of the N- and C-terminal domains of FAM110A with actin and tubulin, respectively. Next, we found that the FAM110A-Δ40-61 mutant deficient in actin binding failed to rescue defects in chromosomal alignment caused by depletion of endogenous FAM110A. Depletion of FAM110A impaired assembly of F-actin in the proximity of spindle poles and was rescued by expression of the wild-type FAM110A, but not the FAM110A-Δ40-61 mutant. Purified FAM110A promoted binding of F-actin to microtubules as well as bundling of actin filaments in vitro. Finally, we found that the inhibition of CK1 impaired spindle actin formation and delayed progression through mitosis. We propose that CK1 and FAM110A promote timely progression through mitosis by mediating the interaction between spindle microtubules and filamentous actin to ensure proper mitotic spindle formation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人子宫内膜的蜕膜化对建立妊娠至关重要,并且需要子宫内膜基质细胞(ESC)分化为蜕膜细胞。在判定过程中,肌动蛋白细胞骨架动态重组为ESCs的形态和功能变化。尽管肌动蛋白不仅在细胞质中在外部刺激下动态地改变其聚合状态,而且在细胞核中,蜕膜化过程中的核肌动蛋白动力学尚未阐明。这里,我们表明,在人类ESC的蜕膜化过程中,核肌动蛋白是特异性组装的。蜕膜化刺激退出后,这种蜕膜化特异性形成的核肌动蛋白丝被分解,表明了它的可逆过程。机械上,RNA-seq分析显示,核肌动蛋白的强制分解导致蜕膜化的抑制,伴随着细胞增殖基因的异常上调,导致细胞周期停滞不完全。CCAAT/增强子结合蛋白β(C/EBPβ),决定化的重要调节器,负责下调核肌动蛋白出口国的监管,从而加速核肌动蛋白的积累和它的组装为蜕化作用。一起来看,我们证明了蜕膜化特异性核肌动蛋白组装诱导细胞周期停滞,以建立ESC的蜕膜化状态。我们认为,不仅细胞质肌动蛋白,而且核肌动蛋白动力学也深刻地影响人类的蜕膜化过程,以确保怀孕。
    Decidualization of the human endometrium is critical for establishing pregnancy and is entailed by differentiation of endometrial stromal cells (ESCs) into decidual cells. During decidualization, the actin cytoskeleton is dynamically reorganized for the ESCs\' morphological and functional changes. Although actin dynamically alters its polymerized state upon external stimuli not only in the cytoplasm, but also in the nucleus, nuclear actin dynamics during decidualization have not been elucidated. Here, we show that nuclear actin was specifically assembled during decidualization of human ESCs. This decidualization-specific formation of nuclear actin filaments was disassembled following the withdrawal of the decidualization stimulus, suggesting its reversible process. Mechanistically, RNA-seq analyses revealed that the forced disassembly of nuclear actin resulted in the suppression of decidualization, accompanied with the abnormal upregulation of cell proliferation genes, leading to incomplete cell cycle arrest. CCAAT/enhancer-binding protein beta (C/EBPβ), an important regulator for decidualization, was responsible for downregulation of the nuclear actin exporter, thus accelerating nuclear actin accumulation and its assembly for decidualization. Taken together, we demonstrate that decidualization-specific nuclear actin assembly induces cell cycle arrest for establishing the decidualized state of ESCs. We propose that not only the cytoplasmic actin, but also nuclear actin dynamics profoundly affect decidualization process in humans for ensuring pregnancy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在共享的细胞质中,丝状肌动蛋白(F-actin)在整个细胞体中起着许多关键的作用。细胞依赖于肌动蛋白结合蛋白(ABP)来组织F-肌动蛋白并将其聚合特征整合到不同的细胞过程中。然而,与F-肌动蛋白接触和形成的大量ABP使研究单个ABP对细胞活动的影响成为一项重大挑战。此外,没有操纵肌动蛋白结合亚细胞的手段,利用F-肌动蛋白细胞骨架用于合成生物学目的仍然难以捉摸。这里,我们描述了一套设计的蛋白质,可控肌动蛋白结合开关工具(CAST),其肌动蛋白结合行为可以用外部刺激控制。CAST被开发出来,以响应不同的外部输入,提供开启动力学选项并实现正交性和多路复用。被基因编码,我们表明,CAST可以插入到天然蛋白质序列中,以控制F-肌动蛋白结合局部和工程结构,以控制细胞和组织的形状和行为。
    Within a shared cytoplasm, filamentous actin (F-actin) plays numerous and critical roles across the cell body. Cells rely on actin-binding proteins (ABPs) to organize F-actin and to integrate its polymeric characteristics into diverse cellular processes. Yet, the multitude of ABPs that engage with and shape F-actin make studying a single ABP\'s influence on cellular activities a significant challenge. Moreover, without a means of manipulating actin-binding subcellularly, harnessing the F-actin cytoskeleton for synthetic biology purposes remains elusive. Here, we describe a suite of designed proteins, Controllable Actin-binding Switch Tools (CASTs), whose actin-binding behavior can be controlled with external stimuli. CASTs were developed that respond to different external inputs, providing options for turn-on kinetics and enabling orthogonality and multiplexing. Being genetically encoded, we show that CASTs can be inserted into native protein sequences to control F-actin association locally and engineered into structures to control cell and tissue shape and behavior.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌动蛋白皮层的结构决定了应力的产生和传递,在从细胞分裂到迁移的关键事件中。然而,其对肌球蛋白诱导的细胞形状变化的影响尚不清楚.这里,我们重建了一个最小的肌动球蛋白皮质模型,在巨大的单层囊泡中具有分支或线性的F-肌动蛋白结构(GUV,脂质体)。肌球蛋白光激活后,单独的分支或线性F-肌动蛋白结构均不诱导显著的脂质体形状变化。分支的F-肌动蛋白网络形成一个完整的,膜结合\“无滑移边界\”样皮质,减弱肌动球蛋白收缩性。相比之下,线性F-肌动蛋白网络形成一个未整合的“滑移边界”状皮层,肌动蛋白形成而不引起膜变形。值得注意的是,脂质体在分支和线性F-肌动蛋白网络的最佳平衡下经历明显的变形。我们的发现强调了分支F-肌动蛋白在力传递和线性F-肌动蛋白在力产生中产生膜形状变化的关键作用。
    The architecture of the actin cortex determines the generation and transmission of stresses, during key events from cell division to migration. However, its impact on myosin-induced cell shape changes remains unclear. Here, we reconstitute a minimal model of the actomyosin cortex with branched or linear F-actin architecture within giant unilamellar vesicles (GUVs, liposomes). Upon light activation of myosin, neither the branched nor linear F-actin architecture alone induces significant liposome shape changes. The branched F-actin network forms an integrated, membrane-bound \"no-slip boundary\" -like cortex that attenuates actomyosin contractility. By contrast, the linear F-actin network forms an unintegrated \"slip boundary\" -like cortex, where actin asters form without inducing membrane deformations. Notably, liposomes undergo significant deformations at an optimized balance of branched and linear F-actin networks. Our findings highlight the pivotal roles of branched F-actin in force transmission and linear F-actin in force generation to yield membrane shape changes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    组织张力包括施加在动物体内实体组织上的机械力,源自各种来源,如细胞收缩性,与邻近细胞和细胞外基质的相互作用。新出现的证据表明,这种力量的不平衡会影响结构组织,稳态,并可能导致疾病。例如,升高的组织张力可以阻碍根尖细胞的挤压,导致凋亡或转化细胞的保留。在这项研究中,我们研究了腺瘤性结肠息肉病(APC)在调节组织张力中的潜在作用。我们的发现揭示了APC截短突变体的表达通过RhoA/ROCK途径升高上皮张力。这种升高诱导培养的上皮细胞和类器官中的形态学改变并阻碍凋亡细胞挤出,这两者都可以通过药理学恢复组织张力来缓解。这增加了APC突变可能通过改变组织力学而发挥致病作用的可能性。
    Tissue tension encompasses the mechanical forces exerted on solid tissues within animal bodies, originating from various sources such as cellular contractility, interactions with neighboring cells and the extracellular matrix. Emerging evidence indicates that an imbalance in such forces can influence structural organization, homeostasis, and potentially contribute to disease. For instance, heightened tissue tension can impede apical cell extrusion, leading to the retention of apoptotic or transformed cells. In this study, we investigate the potential role of adenomatous polyposis coli (APC) in modulating tissue tension. Our findings reveal that expression of an APC truncation mutant elevates epithelial tension via the RhoA/ROCK pathway. This elevation induces morphological alterations and hampers apoptotic cell extrusion in cultured epithelial cells and organoids, both of which could be mitigated by pharmacologically restoring the tissue tension. This raises the possibility that APC mutations may exert pathogenetic effects by altering tissue mechanics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞质FMR1相互作用蛋白2(CYFIP2)中的从头变异体与神经发育障碍和癫痫反复相关,强调其在大脑发育和功能中的关键作用。虽然CYFIP2作为WAVE调节复合物(WRC)的一部分在调节肌动蛋白聚合中的作用已广为人知,其额外的分子功能仍然相对未被探索。在这项研究中,我们进行了无偏的定量蛋白质组学分析,揭示了与野生型小鼠相比,Cyfip2敲除胚胎小鼠前脑中278种差异表达蛋白(DEP)。出乎意料的是,这些DEP,结合先前确定的CYFIP2大脑相互作用者,不仅包括其他WRC成分,而且还包括许多与细胞内mRNA加工和翻译相关的无膜细胞器(MLO)相关的蛋白质,包括核仁,应力颗粒,和处理机构。此外,Cyfip2敲除前脑的单细胞转录组分析显示,与细胞应激反应和MLO相关的基因表达变化。我们还观察到在基础和应激条件下Cyfip2敲除脑和CYFIP2敲除细胞中MLO的形态变化。最后,我们证明CYFIP2在细胞中敲低,可能通过WRC依赖性肌动蛋白调节,抑制真核翻译起始因子2(eIF2α)α亚基的磷酸化水平,从而增强蛋白质合成。这些结果表明CYFIP2与各种MLO蛋白之间存在物理和功能上的联系,并且还将CYFIP2在WRC中的作用从肌动蛋白调节扩展到影响eIF2α磷酸化和蛋白质合成。有了这些双重功能,CYFIP2可以微调MLO形成/动力学和蛋白质合成之间的平衡,正确的mRNA加工和翻译的关键方面。
    De novo variants in the Cytoplasmic FMR1-interacting protein 2 (CYFIP2) have been repeatedly associated with neurodevelopmental disorders and epilepsy, underscoring its critical role in brain development and function. While CYFIP2\'s role in regulating actin polymerization as part of the WAVE regulatory complex (WRC) is well-established, its additional molecular functions remain relatively unexplored. In this study, we performed unbiased quantitative proteomic analysis, revealing 278 differentially expressed proteins (DEPs) in the forebrain of Cyfip2 knock-out embryonic mice compared to wild-type mice. Unexpectedly, these DEPs, in conjunction with previously identified CYFIP2 brain interactors, included not only other WRC components but also numerous proteins associated with membraneless organelles (MLOs) involved in mRNA processing and translation within cells, including the nucleolus, stress granules, and processing bodies. Additionally, single-cell transcriptomic analysis of the Cyfip2 knock-out forebrain revealed gene expression changes linked to cellular stress responses and MLOs. We also observed morphological changes in MLOs in Cyfip2 knock-out brains and CYFIP2 knock-down cells under basal and stress conditions. Lastly, we demonstrated that CYFIP2 knock-down in cells, potentially through WRC-dependent actin regulation, suppressed the phosphorylation levels of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α), thereby enhancing protein synthesis. These results suggest a physical and functional connection between CYFIP2 and various MLO proteins and also extend CYFIP2\'s role within the WRC from actin regulation to influencing eIF2α phosphorylation and protein synthesis. With these dual functions, CYFIP2 may fine-tune the balance between MLO formation/dynamics and protein synthesis, a crucial aspect of proper mRNA processing and translation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    ATP-肌动蛋白单体组装细丝后,ATP的[配方:见正文]-磷酸盐在数秒内水解并在数分钟内解离。我们使用全原子分子动力学模拟对细丝中磷酸盐的释放进行采样,并研究了释放的残留物。磷酸盐从Mg2中的解离是限速的,并且与20kcal/mol的能垒有关,与磷酸盐释放的实验速率一致。磷酸盐然后在内部空腔内朝向由R177形成的栅极扩散,如在先前的计算研究和低温EM结构中所建议的。当R177与N111氢键结合时,门关闭,当R177与D179形成盐桥时,门打开。大多数时候,R177与其他残基的相互作用会阻碍磷酸盐释放途径。机器学习分析表明,闭塞的相互作用波动迅速,强调背门开启在Pi释放中的次要作用,与之前的假设相反,闸门打开是主要事件。
    After ATP-actin monomers assemble filaments, the ATP\'s [Formula: see text]-phosphate is hydrolyzedwithin seconds and dissociates over minutes. We used all-atom molecular dynamics simulations to sample the release of phosphate from filaments and study residues that gate release. Dissociation of phosphate from Mg2+ is rate limiting and associated with an energy barrier of 20 kcal/mol, consistent with experimental rates of phosphate release. Phosphate then diffuses within an internal cavity toward a gate formed by R177, as suggested in prior computational studies and cryo-EM structures. The gate is closed when R177 hydrogen bonds with N111 and is open when R177 forms a salt bridge with D179. Most of the time, interactions of R177 with other residues occlude the phosphate release pathway. Machine learning analysis reveals that the occluding interactions fluctuate rapidly, underscoring the secondary role of backdoor gate opening in Pi release, in contrast with the previous hypothesis that gate opening is the primary event.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞生物学中的一个重要问题是细胞骨架蛋白如何进化并推动新结构和功能的发展。在这里,我们讨论了SPIRE肌动蛋白成核剂的起源。哺乳动物SPIRE与RABGTPases一起工作,形式蛋白(FMN)-亚组肌动蛋白组装蛋白和5类肌球蛋白(MYO5)马达沿着肌动蛋白丝向细胞膜运输细胞器。然而,物种之间SPIRE功能保护的起源和程度未知。我们的序列搜索表明,SPIRE存在于整个全息动物(动物及其最接近的单细胞亲属)中,但不是其他真核生物。来自单细胞全息动物的SPIRE(小囊鞭毛),与RAB互动,FMN和MYO5蛋白,使肌动蛋白丝成核并补充哺乳动物SPIRE在细胞器转运中的功能。同时,SPIRE和MYO5蛋白共同定位在Salpingoecarosetta鞭毛虫的细胞器上。基于这些观察,我们认为SPIRE起源于动物的单细胞祖先,提供了肌动蛋白-肌球蛋白驱动的胞吞运输机制,这可能有助于复杂多细胞动物的进化。
    An important question in cell biology is how cytoskeletal proteins evolved and drove the development of novel structures and functions. Here we address the origin of SPIRE actin nucleators. Mammalian SPIREs work with RAB GTPases, formin (FMN)-subgroup actin assembly proteins and class-5 myosin (MYO5) motors to transport organelles along actin filaments towards the cell membrane. However, the origin and extent of functional conservation of SPIRE among species is unknown. Our sequence searches show that SPIRE exist throughout holozoans (animals and their closest single-celled relatives), but not other eukaryotes. SPIRE from unicellular holozoans (choanoflagellate), interacts with RAB, FMN and MYO5 proteins, nucleates actin filaments and complements mammalian SPIRE function in organelle transport. Meanwhile SPIRE and MYO5 proteins colocalise to organelles in Salpingoeca rosetta choanoflagellates. Based on these observations we propose that SPIRE originated in unicellular ancestors of animals providing an actin-myosin driven exocytic transport mechanism that may have contributed to the evolution of complex multicellular animals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号