AP, adaptor protein

  • 文章类型: Journal Article
    质膜转运蛋白在营养物质的导入中起着关键作用,包括糖,氨基酸,核碱基,羧酸,和金属离子,围绕真菌细胞。通过胞吞作用选择性去除这些转运蛋白是最重要的调节机制之一,可确保细胞快速适应不断变化的环境(例如,营养波动或不同的压力)。这种机制的核心是蛋白质网络,其中包括与抑制蛋白相关的运输衔接子(ART),该衔接子将泛素连接酶Rsp5与营养转运蛋白和内吞因子联系起来。转运蛋白构象变化,以及其胞质末端/环与质膜脂质之间的动态相互作用,在胞吞过程中也很关键。这里,我们回顾了有关营养转运蛋白内吞作用的分子机制的最新知识和最新发现,在酿酒酵母酵母和某些丝状真菌曲霉中。我们详细阐述了在自然界中发现的动态条件下,紧密调节的内吞作用对细胞适应性的生理重要性,并强调了对该过程的进一步理解和工程对于最大化滴度至关重要。工业生物技术过程中工程细胞工厂的速率和产量(TRY)值。
    Plasma membrane transporters play pivotal roles in the import of nutrients, including sugars, amino acids, nucleobases, carboxylic acids, and metal ions, that surround fungal cells. The selective removal of these transporters by endocytosis is one of the most important regulatory mechanisms that ensures a rapid adaptation of cells to the changing environment (e.g., nutrient fluctuations or different stresses). At the heart of this mechanism lies a network of proteins that includes the arrestin-related trafficking adaptors (ARTs) which link the ubiquitin ligase Rsp5 to nutrient transporters and endocytic factors. Transporter conformational changes, as well as dynamic interactions between its cytosolic termini/loops and with lipids of the plasma membrane, are also critical during the endocytic process. Here, we review the current knowledge and recent findings on the molecular mechanisms involved in nutrient transporter endocytosis, both in the budding yeast Saccharomyces cerevisiae and in some species of the filamentous fungus Aspergillus. We elaborate on the physiological importance of tightly regulated endocytosis for cellular fitness under dynamic conditions found in nature and highlight how further understanding and engineering of this process is essential to maximize titer, rate and yield (TRY)-values of engineered cell factories in industrial biotechnological processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    豆科植物莲花与固氮细菌Mesorhizobiumloti之间的共生关系导致根瘤的形成。此过程始于宿主根细胞表面的NF受体(NFR)对根瘤菌结瘤因子(NF)的识别。NFR识别后的下游信号级联尚未完全表征。我们最近鉴定了来自日本血吸虫的网格蛋白重链1(CHC1)作为NF信号级联的潜在靶标。CHC是真核细胞中网格蛋白介导的内吞作用(CME)中已知的中心组分。CHC1基因在根瘤菌感染的根毛中高表达,CHC1蛋白存在于感染袋附近和感染线膜的细胞质点状结构中。此外,CHC1的显性阴性变体的表达或用CME的化学抑制剂治疗导致NF信号中的表型受损,根瘤菌感染和结瘤。这些发现为未来的工作开辟了一条新途径,旨在了解内吞作用在NF信号通路和根瘤菌感染中的作用。
    The symbiotic association between the legume Lotus japonicus and the nitrogen-fixing bacterium Mesorhizobium loti results in the formation of root nodules. This process begins with the recognition of the rhizobial nodulation factor (NF) by the NF receptors (NFR) at the cell surface of the host roots. The downstream signaling cascades after NFR recognition have not been fully characterized. We recently identified a clathrin heavy chain 1 (CHC1) from L. japonicus as a potential target of the NF signaling cascades. CHC is a known central component in the clathrin-mediated endocytosis (CME) in eukaryotic cells. The CHC1 gene was highly expressed in Rhizobium-infected root hairs and the CHC1 protein was present in cytoplasmic punctate structures near the infection pockets and along the infection thread membrane. Furthermore, expression of a dominant-negative variant of CHC1 or treatment with a chemical inhibitor of CME resulted in impaired phenotypes in the NF signaling, rhizobial infection and nodulation. These findings open a new avenue for future work aiming at understanding the role of endocytosis in NF signaling pathway and rhizobial infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从神经祖细胞产生神经元,轴突和树突的生长以及突触的形成和重组是神经可塑性的例子。这些过程由介导神经细胞对环境输入的反应的细胞自主和细胞间(旁分泌和内分泌)程序调节。线粒体是高度移动的,在参与神经可塑性的亚细胞区室内部和之间移动(突触末端,树突,细胞体和轴突)。通过产生能量(ATP和NAD(+)),调节亚细胞Ca(2+)和氧化还原稳态,线粒体可能在控制神经可塑性的基本过程中发挥重要作用,包括神经分化,神经突生长,神经递质释放和树突重塑。特别有趣的是新出现的数据表明线粒体会发出分子信号(例如活性氧,蛋白质和脂质介质)可以局部作用或传播到包括细胞核在内的远处目标。线粒体功能和信号传导紊乱可能在阿尔茨海默病中神经可塑性受损和神经元变性中起作用。帕金森病,精神疾病和中风。
    The production of neurons from neural progenitor cells, the growth of axons and dendrites and the formation and reorganization of synapses are examples of neuroplasticity. These processes are regulated by cell-autonomous and intercellular (paracrine and endocrine) programs that mediate responses of neural cells to environmental input. Mitochondria are highly mobile and move within and between subcellular compartments involved in neuroplasticity (synaptic terminals, dendrites, cell body and the axon). By generating energy (ATP and NAD(+)), and regulating subcellular Ca(2+) and redox homoeostasis, mitochondria may play important roles in controlling fundamental processes in neuroplasticity, including neural differentiation, neurite outgrowth, neurotransmitter release and dendritic remodelling. Particularly intriguing is emerging data suggesting that mitochondria emit molecular signals (e.g. reactive oxygen species, proteins and lipid mediators) that can act locally or travel to distant targets including the nucleus. Disturbances in mitochondrial functions and signalling may play roles in impaired neuroplasticity and neuronal degeneration in Alzheimer\'s disease, Parkinson\'s disease, psychiatric disorders and stroke.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号