AFADESI, air flow-assisted desorption electrospray ionization

  • 文章类型: Journal Article
    关于糖尿病肾病(DN)中组织特异性代谢重编程的详细知识对于更准确地理解分子病理学特征和开发新的治疗策略至关重要。在本研究中,提出了一种基于空气流动辅助解吸电喷雾电离(AFADESI)和基质辅助激光解吸电离(MALDI)整合质谱成像(MSI)的空间分辨代谢组学方法,以研究高脂饮食喂养和链脲佐菌素(STZ)治疗的DN大鼠肾脏的组织特异性代谢变化以及黄芪甲苷的治疗作用,一种潜在的抗糖尿病药物,对DN。因此,广泛的功能性代谢物,包括糖,氨基酸,核苷酸及其衍生物,脂肪酸,磷脂,鞘脂,甘油酯,肉碱及其衍生物,维生素,肽,并鉴定了与DN相关的金属离子,并以高化学特异性和高空间分辨率显示了它们在大鼠肾脏中的独特分布模式。通过反复口服黄芪甲苷(100mg/kg)12周可改善这些特定区域的代谢紊乱。这项研究提供了有关糖尿病大鼠肾脏组织特异性代谢重编程和分子病理学特征的更全面和详细信息。这些发现强调了AFADESI和MALDI整合的基于MSI的代谢组学方法在代谢性肾脏疾病中的应用潜力。
    Detailed knowledge on tissue-specific metabolic reprogramming in diabetic nephropathy (DN) is vital for more accurate understanding the molecular pathological signature and developing novel therapeutic strategies. In the present study, a spatial-resolved metabolomics approach based on air flow-assisted desorption electrospray ionization (AFADESI) and matrix-assisted laser desorption ionization (MALDI) integrated mass spectrometry imaging (MSI) was proposed to investigate tissue-specific metabolic alterations in the kidneys of high-fat diet-fed and streptozotocin (STZ)-treated DN rats and the therapeutic effect of astragaloside IV, a potential anti-diabetic drug, against DN. As a result, a wide range of functional metabolites including sugars, amino acids, nucleotides and their derivatives, fatty acids, phospholipids, sphingolipids, glycerides, carnitine and its derivatives, vitamins, peptides, and metal ions associated with DN were identified and their unique distribution patterns in the rat kidney were visualized with high chemical specificity and high spatial resolution. These region-specific metabolic disturbances were ameliorated by repeated oral administration of astragaloside IV (100 mg/kg) for 12 weeks. This study provided more comprehensive and detailed information about the tissue-specific metabolic reprogramming and molecular pathological signature in the kidney of diabetic rats. These findings highlighted the promising potential of AFADESI and MALDI integrated MSI based metabolomics approach for application in metabolic kidney diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    了解候选药物引起的肾毒性对药物的发现和开发至关重要。在这里,建立了一种基于气流辅助解吸电喷雾质谱成像(AFADESI-MSI)的原位代谢组学方法,用于直接分析肾组织切片中的代谢物.随后将此方法用于研究马兜铃酸I给药后大鼠肾脏的空间分辨代谢谱变化,一种已知的肾毒性药物,旨在发现与肾毒性相关的代谢物。因此,与精氨酸-肌酐代谢途径相关的38种代谢物,尿素循环,丝氨酸合成途径,脂类代谢,胆碱,组胺,赖氨酸,在马兜铃酸I治疗组中,三磷酸腺苷明显变化。这些代谢物在大鼠肾脏中表现出独特的分布,并且与组织病理学肾脏病变具有良好的空间匹配。这项研究为马兜铃酸肾毒性的潜在机制提供了新的见解,并表明基于AFADESI-MSI的原位代谢组学是研究药物毒性分子机制的有前途的技术。
    Understanding of the nephrotoxicity induced by drug candidates is vital to drug discovery and development. Herein, an in situ metabolomics method based on air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) was established for direct analysis of metabolites in renal tissue sections. This method was subsequently applied to investigate spatially resolved metabolic profile changes in rat kidney after the administration of aristolochic acid I, a known nephrotoxic drug, aimed to discover metabolites associated with nephrotoxicity. As a result, 38 metabolites related to the arginine-creatinine metabolic pathway, the urea cycle, the serine synthesis pathway, metabolism of lipids, choline, histamine, lysine, and adenosine triphosphate were significantly changed in the group treated with aristolochic acid I. These metabolites exhibited a unique distribution in rat kidney and a good spatial match with histopathological renal lesions. This study provides new insights into the mechanisms underlying aristolochic acids nephrotoxicity and demonstrates that AFADESI-MSI-based in situ metabolomics is a promising technique for investigation of the molecular mechanism of drug toxicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号