ADAR1

ADAR1
  • 文章类型: Journal Article
    众所周知,七氟烷暴露会导致发育中的大脑中广泛的神经元细胞死亡。腺苷脱氨酶作用于RNA-1(ADAR1)依赖性腺苷-肌苷(A-I)RNA编辑在整个脑发育过程中动态调节。本研究旨在探讨ADAR1在七氟醚神经毒性中的作用。在这里,我们提供的证据表明,发育七氟醚启动触发神经元焦亡,细胞凋亡和坏死(PANoptosis),并引起炎症因子的释放,包括IL-1β,IL-18、TNF-α和IFN-γ。此外,ADAR1-P150,而不是ADAR1-P110,通过在七氟烷存在下与Z-DNA/RNA结合蛋白1(ZBP1)竞争与Z-RNA结合来抑制细胞PANoptosis和炎症反应。进一步的研究表明,ADAR1依赖性A-IRNA编辑减轻七氟醚诱导的神经元PANoptosis发育。要恢复RNA编辑,我们利用腺相关病毒(AAV)将工程化的环状ADAR募集指导RNA(cadRNAs)传递到细胞中,能够募集内源性腺苷脱氨酶以促进细胞A到IRNA编辑。如预期,AAV-cadRNAs减少七氟醚诱导的细胞Z-RNA产生和PANoptosis,ADAR1-P150shRNA转染可以废除。此外,AAV-cadRNAs递送改善七氟醚诱导的发育性空间和情绪认知缺陷而不影响运动活动。一起来看,这些结果说明,ADAR1-P150在七氟醚发育性神经毒性中通过A-to-IRNA编辑预防ZBP1依赖性PANoptosis中发挥了突出作用.应用工程化的cadRNA来纠正受损的ADAR1依赖性A到IRNA编辑为可能的临床预防和治疗提供了鼓舞人心的方向。
    It is well established that sevoflurane exposure leads to widespread neuronal cell death in the developing brain. Adenosine deaminase acting on RNA-1 (ADAR1) dependent adenosine-to-inosine (A-to-I) RNA editing is dynamically regulated throughout brain development. The current investigation is designed to interrogate the contributed role of ADAR1 in developmental sevoflurane neurotoxicity. Herein, we provide evidence to show that developmental sevoflurane priming triggers neuronal pyroptosis, apoptosis and necroptosis (PANoptosis), and elicits the release of inflammatory factors including IL-1β, IL-18, TNF-α and IFN-γ. Additionally, ADAR1-P150, but not ADAR1-P110, depresses cellular PANoptosis and inflammatory response by competing with Z-DNA/RNA binding protein 1 (ZBP1) for binding to Z-RNA in the presence of sevoflurane. Further investigation demonstrates that ADAR1-dependent A-to-I RNA editing mitigates developmental sevoflurane-induced neuronal PANoptosis. To restore RNA editing, we utilize adeno-associated virus (AAV) to deliver engineered circular ADAR-recruiting guide RNAs (cadRNAs) into cells, which is capable of recruiting endogenous adenosine deaminases to promote cellular A-to-I RNA editing. As anticipated, AAV-cadRNAs diminishes sevoflurane-induced cellular Z-RNA production and PANoptosis, which could be abolished by ADAR1-P150 shRNA transfection. Moreover, AAV-cadRNAs delivery ameliorates developmental sevoflurane-induced spatial and emotional cognitive deficits without influence on locomotor activity. Taken together, these results illustrate that ADAR1-P150 exhibits a prominent role in preventing ZBP1-dependent PANoptosis through A-to-I RNA editing in developmental sevoflurane neurotoxicity. Application of engineered cadRNAs to rectify the compromised ADAR1-dependent A-to-I RNA editing provides an inspiring direction for possible clinical preventions and therapeutics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    作用于RNA1的腺苷脱氨酶(ADAR1)在双链RNA(dsRNA)分子中将腺苷转化为肌苷,称为A-to-I编辑的过程。人类和小鼠中的ADAR1缺乏导致以自发诱导先天免疫为特征的深度炎性疾病。在缺乏ADAR1的细胞中,未编辑的RNA激活RNA传感器。这些包括诱导细胞因子表达的黑色素瘤分化相关基因5(MDA5),特别是I型干扰素(IFNs),蛋白激酶R(PKR),寡腺苷酸合成酶(OAS),和Z-DNA/RNA结合蛋白1(ZBP1)。ADAR1“消除”的免疫原性RNA可能包括来自重复元件和其他长双链体RNA的转录本。这里,我们回顾了这些最近的基本发现,并讨论了对人类疾病的影响。一些肿瘤依靠ADAR1逃避免疫监视,开启了用ADAR1抑制剂释放抗癌疗法的可能性。
    Adenosine deaminase acting on RNA 1 (ADAR1) converts adenosine to inosine in double-stranded RNA (dsRNA) molecules, a process known as A-to-I editing. ADAR1 deficiency in humans and mice results in profound inflammatory diseases characterised by the spontaneous induction of innate immunity. In cells lacking ADAR1, unedited RNAs activate RNA sensors. These include melanoma differentiation-associated gene 5 (MDA5) that induces the expression of cytokines, particularly type I interferons (IFNs), protein kinase R (PKR), oligoadenylate synthase (OAS), and Z-DNA/RNA binding protein 1 (ZBP1). Immunogenic RNAs \'defused\' by ADAR1 may include transcripts from repetitive elements and other long duplex RNAs. Here, we review these recent fundamental discoveries and discuss implications for human diseases. Some tumours depend on ADAR1 to escape immune surveillance, opening the possibility of unleashing anticancer therapies with ADAR1 inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    作用于RNA的腺苷脱氨酶(ADAR)是负责将双链RNA(dsRNA)内的腺苷转化为肌苷的关键RNA编辑酶。ADAR1编辑活性调节异常,通常是由基因突变引起的,与干扰素水平升高和自身炎症性疾病的发作有关。然而,缺乏实验确定的ADAR1脱氨酶结构域结构阻碍了理解这种失调的分子基础。在这项计算研究中,我们利用同源建模和AlphaFold2构建野生型和两个致病变体的ADAR1脱氨酶结构域的结构模型,R892H和Y1112F,破译对脱氨酶活性降低的结构影响。我们的发现阐明了ADAR1脱氨酶结构域和dsRNA之间的结构互补性在酶-底物识别中的关键作用。也就是说,必须保持E1008和K1120的相对位置,以便它们可以插入底物dsRNA的次要和主要凹槽中,分别,促进待容纳在围绕E912的腔内的腺苷的翻转。研究了两种氨基酸替代,R892H在正构部位,Y1112F在变构部位,改变K1120位置并最终阻碍底物RNA结合。
    Adenosine deaminases acting on RNA (ADARs) are pivotal RNA-editing enzymes responsible for converting adenosine to inosine within double-stranded RNA (dsRNA). Dysregulation of ADAR1 editing activity, often arising from genetic mutations, has been linked to elevated interferon levels and the onset of autoinflammatory diseases. However, understanding the molecular underpinnings of this dysregulation is impeded by the lack of an experimentally determined structure for the ADAR1 deaminase domain. In this computational study, we utilized homology modeling and the AlphaFold2 to construct structural models of the ADAR1 deaminase domain in wild-type and two pathogenic variants, R892H and Y1112F, to decipher the structural impact on the reduced deaminase activity. Our findings illuminate the critical role of structural complementarity between the ADAR1 deaminase domain and dsRNA in enzyme-substrate recognition. That is, the relative position of E1008 and K1120 must be maintained so that they can insert into the minor and major grooves of the substrate dsRNA, respectively, facilitating the flipping-out of adenosine to be accommodated within a cavity surrounding E912. Both amino acid replacements studied, R892H at the orthosteric site and Y1112F at the allosteric site, alter K1120 position and ultimately hinder substrate RNA binding.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    外写是一个研究转录后变化的领域。在这些修改中,腺苷转化为肌苷,作为鸟苷(A>I(G)),是已知的RNA编辑机制之一,由ADAR催化。这种类型的RNA编辑是哺乳动物中最常见的编辑类型,有助于生物多样性。A>I(G)RNA编辑平衡的破坏与疾病有关,包括几种癌症。癌症患者的耐药性是一个重要的公共卫生问题,导致治疗无反应性和疾病进展导致的死亡率增加,代表了这一领域研究人员的最大挑战。A>I(G)RNA编辑涉及免疫疗法和基因毒性药物反应和耐药性的几种机制。这篇综述研究了ADAR1与特定A>I(G)RNA编辑位点之间的关系,特别关注乳腺癌,以及这些位点对DNA损伤修复和抗癌治疗的免疫反应的影响。我们解决了潜在的机制,生物信息学,以及鉴定和验证A>I(G)RNA编辑位点的体外策略。我们收集了与A>I(G)RNA编辑和癌症相关的数据库,并讨论了理解A>I(G)RNA编辑模式的潜在临床和研究意义。了解ADAR1介导的A>I(G)RNA编辑在乳腺癌中的复杂作用,对于开发针对个体患者的个性化治疗方法具有重要意义。
    Epitranscriptomics is a field that delves into post-transcriptional changes. Among these modifications, the conversion of adenosine to inosine, traduced as guanosine (A>I(G)), is one of the known RNA-editing mechanisms, catalyzed by ADARs. This type of RNA editing is the most common type of editing in mammals and contributes to biological diversity. Disruption in the A>I(G) RNA-editing balance has been linked to diseases, including several types of cancer. Drug resistance in patients with cancer represents a significant public health concern, contributing to increased mortality rates resulting from therapy non-responsiveness and disease progression, representing the greatest challenge for researchers in this field. The A>I(G) RNA editing is involved in several mechanisms over the immunotherapy and genotoxic drug response and drug resistance. This review investigates the relationship between ADAR1 and specific A>I(G) RNA-edited sites, focusing particularly on breast cancer, and the impact of these sites on DNA damage repair and the immune response over anti-cancer therapy. We address the underlying mechanisms, bioinformatics, and in vitro strategies for the identification and validation of A>I(G) RNA-edited sites. We gathered databases related to A>I(G) RNA editing and cancer and discussed the potential clinical and research implications of understanding A>I(G) RNA-editing patterns. Understanding the intricate role of ADAR1-mediated A>I(G) RNA editing in breast cancer holds significant promise for the development of personalized treatment approaches tailored to individual patients\' A>I(G) RNA-editing profiles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Z-核酸结构在细胞过程中起着至关重要的作用,并且由于它们被含有Zα结构域的蛋白质(Z-DNA/Z-RNA结合蛋白,ZBP).虽然已经在六种蛋白质中鉴定出Zα结构域,包括病毒E3L,ORF112和I73R,还有,细胞ADAR1、ZBP1和PKZ,它们在生物体中的流行程度在很大程度上仍未被探索。在这项研究中,我们介绍了一种预测Zα域的计算方法,导致在真核生物中发现先前未被识别的含Zα结构域的蛋白质,包括非后生动物物种。我们的发现包括在以前未开发的巨型病毒中发现了新的ZBP,核细胞病毒科门的成员。通过实验验证,我们确认了选定蛋白质的Zα功能,建立它们诱导B到Z转化的能力。此外,我们鉴定了细菌蛋白质中的Zα样结构域。虽然这些域与Zα域共享某些特征,它们缺乏与Z-核酸结合或促进B-ZDNA转化的能力。我们的发现显着扩展了ZBP家族在广泛的生物体中,并提出了有关含Zα蛋白的进化起源的有趣问题。此外,我们的研究为Zα结构域在病毒感知和先天免疫中的功能意义提供了新的视角,并为探索迄今为止尚未发现的ZBP功能开辟了途径。
    Z-nucleic acid structures play vital roles in cellular processes and have implications in innate immunity due to their recognition by Zα domains containing proteins (Z-DNA/Z-RNA binding proteins, ZBPs). Although Zα domains have been identified in six proteins, including viral E3L, ORF112, and I73R, as well as, cellular ADAR1, ZBP1, and PKZ, their prevalence across living organisms remains largely unexplored. In this study, we introduce a computational approach to predict Zα domains, leading to the revelation of previously unidentified Zα domain-containing proteins in eukaryotic organisms, including non-metazoan species. Our findings encompass the discovery of new ZBPs in previously unexplored giant viruses, members of the Nucleocytoviricota phylum. Through experimental validation, we confirm the Zα functionality of select proteins, establishing their capability to induce the B-to-Z conversion. Additionally, we identify Zα-like domains within bacterial proteins. While these domains share certain features with Zα domains, they lack the ability to bind to Z-nucleic acids or facilitate the B-to-Z DNA conversion. Our findings significantly expand the ZBP family across a wide spectrum of organisms and raise intriguing questions about the evolutionary origins of Zα-containing proteins. Moreover, our study offers fresh perspectives on the functional significance of Zα domains in virus sensing and innate immunity and opens avenues for exploring hitherto undiscovered functions of ZBPs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    ADAR1介导的RNA编辑通过阻止其感知来建立对内源性双链RNA(dsRNA)的免疫耐受,主要是MDA5。尽管删除Ifih1(编码MDA5)可以挽救ADAR1缺陷小鼠的胚胎致死率,他们仍然会经历产后早期死亡,去除其他MDA5信号蛋白不会产生相同的拯救。这里,我们表明,在肝脏特异性Adar基因敲除(KO)小鼠模型中,MDA5的消融未能挽救由ADAR1缺失引起的肝脏异常.Ifih1;Adar双KO(dKO)肝细胞积累内源性dsRNA,导致异常过渡到高度炎症状态,并将巨噬细胞募集到dKO肝脏中。机械上,颗粒蛋白前体(PGRN)似乎介导ADAR1缺乏诱导的肝脏病理,促进干扰素信号传导和吸引表皮生长因子受体(EGFR)+巨噬细胞进入dKO肝脏,加重肝脏炎症。值得注意的是,在ADAR1high肿瘤中,PGRN-EGFR串扰通讯和随之而来的免疫反应被显著抑制,揭示了肿瘤前或肿瘤细胞可以利用ADAR1依赖性免疫耐受来促进免疫逃避。
    ADAR1-mediated RNA editing establishes immune tolerance to endogenous double-stranded RNA (dsRNA) by preventing its sensing, primarily by MDA5. Although deleting Ifih1 (encoding MDA5) rescues embryonic lethality in ADAR1-deficient mice, they still experience early postnatal death, and removing other MDA5 signaling proteins does not yield the same rescue. Here, we show that ablation of MDA5 in a liver-specific Adar knockout (KO) murine model fails to rescue hepatic abnormalities caused by ADAR1 loss. Ifih1;Adar double KO (dKO) hepatocytes accumulate endogenous dsRNAs, leading to aberrant transition to a highly inflammatory state and recruitment of macrophages into dKO livers. Mechanistically, progranulin (PGRN) appears to mediate ADAR1 deficiency-induced liver pathology, promoting interferon signaling and attracting epidermal growth factor receptor (EGFR)+ macrophages into dKO liver, exacerbating hepatic inflammation. Notably, the PGRN-EGFR crosstalk communication and consequent immune responses are significantly repressed in ADAR1high tumors, revealing that pre-neoplastic or neoplastic cells can exploit ADAR1-dependent immune tolerance to facilitate immune evasion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    认为正(+)单链RNA(ssRNA)病毒的基因组经受广泛的RNA修饰。在这项研究中,我们专注于基孔肯雅病毒(CHIKV)作为模型()ssRNA病毒,以研究受感染的人类细胞中病毒RNA修饰的景观。在通过质谱分析的32种不同的RNA修饰中,发现肌苷富集在基因组CHIKVRNA中。然而,通过IlluminaRNA-seq分析进行的正交验证未发现CHIKVRNA基因组上有任何肌苷修饰.此外,CHIKV感染没有改变ADAR1亚型的表达,催化腺苷向肌苷转化的酶。一起,这项研究强调了多学科方法评估病毒RNA基因组中RNA修饰的重要性.
    The genomes of positive-sense (+) single-stranded RNA (ssRNA) viruses are believed to be subjected to a wide range of RNA modifications. In this study, we focused on the chikungunya virus (CHIKV) as a model (+) ssRNA virus to study the landscape of viral RNA modification in infected human cells. Among the 32 distinct RNA modifications analysed by mass spectrometry, inosine was found enriched in the genomic CHIKV RNA. However, orthogonal validation by Illumina RNA-seq analyses did not identify any inosine modification along the CHIKV RNA genome. Moreover, CHIKV infection did not alter the expression of ADAR1 isoforms, the enzymes that catalyse the adenosine to inosine conversion. Together, this study highlights the importance of a multidisciplinary approach to assess the presence of RNA modifications in viral RNA genomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    腺苷脱氨酶作用于RNA1(ADAR1),一种RNA编辑酶,通过双链RNA的脱氨基作用将腺苷转化为肌苷,在各类癌症的发生和发展中起着重要作用。近年来,Ferroptosis已成为癌症研究的热门话题。我们先前报道过ADAR1通过调节miR-335-5p和METTL3促进乳腺癌进展。然而,ADAR1是否对乳腺癌细胞的铁凋亡有影响尚不清楚.在这项研究中,我们使用CRISPR-Cas9技术敲低ADAR1或使用表达ADAR1的质粒在MCF-7和MDA-MB-231乳腺癌细胞系中过表达ADAR1蛋白,然后检测细胞活力,和ROS的水平,MDA,GSH,Fe2+,GPX4蛋白和miR-335-5p。我们发现细胞增殖受到抑制,ROS的水平,MDA,Fe2+,和miR-335-5p增加,与对照组相比,ADAR1丢失后GSH和GPX4水平降低。在细胞中ADAR1过表达后观察到相反的作用。Further,我们证明了ADAR1控制的miR-335-5p靶向GPX4的Sp1转录因子,这是一种已知的铁死亡分子标记,导致乳腺癌细胞中ADAR1抑制铁凋亡。此外,ADAR1的RNA编辑活性对于诱导铁死亡不是必需的。总的来说,ADAR1缺失通过调节miR-335-5p/Sp1/GPX4途径诱导乳腺癌细胞铁凋亡。这些发现可能为ADAR1通过抑制铁性凋亡促进乳腺癌进展的机制提供了见解。
    Adenosine deaminases acting on RNA 1(ADAR1), an RNA editing enzyme that converts adenosine to inosine by deamination in double-stranded RNAs, plays an important role in occurrence and progression of various types of cancer. Ferroptosis has emerged as a hot topic of cancer research in recent years. We have previously reported that ADAR1 promotes breast cancer progression by regulating miR-335-5p and METTL3. However, whether ADAR1 has effects on ferroptosis in breast cancer cells is largely unknown. In this study, we knocked down ADAR1 using CRISPR-Cas9 technology or over-expressed ADAR1 protein using plasmid expressing ADAR1 in MCF-7 and MDA-MB-231 breast cancer cell lines, then detected cell viability, and levels of ROS, MDA, GSH, Fe2+, GPX4 protein and miR-335-5p. We showed that the cell proliferation was inhibited, levels of ROS, MDA, Fe2+, and miR-335-5p were increased, while GSH and GPX4 levels were decreased after loss of ADAR1, compared to the control group. The opposite effects were observed after ADAR1 overexpression in the cells. Further, we demonstrated that ADAR1-controlled miR-335-5p targeted Sp1 transcription factor of GPX4, a known ferroptosis molecular marker, leading to inhibition of ferroptosis by ADAR1 in breast cancer cells. Moreover, RNA editing activity of ADAR1 is not essential for inducing ferroptosis. Collectively, loss of ADAR1 induces ferroptosis in breast cancer cells by regulating miR-335-5p/Sp1/GPX4 pathway. The findings may provide insights into the mechanism by which ADAR1 promotes breast cancer progression via inhibiting ferroptosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:ARID1A,SWI/SNF染色质重塑复合物的一个亚基,被认为在肿瘤抑制和肿瘤启动中起着重要作用,这高度依赖于上下文。先前的研究表明,ARID1A缺乏可能有助于癌症的发展。ARID1A丢失是否通过RNA编辑影响肿瘤发生的具体机制尚不清楚。
    结果:我们的发现表明,ARID1A的缺乏导致RNA编辑水平的增加和由腺苷脱氨酶作用于RNA1(ADAR1)介导的RNA编辑类别的改变。ADAR1在两个以前未确定的位点编辑CDK13基因,即Q113R和K117R。鉴于CDK13作为细胞周期蛋白依赖性激酶的关键作用,我们进一步观察到ADAR1缺乏导致细胞周期的变化.重要的是,ARID1A缺陷型肿瘤细胞对SR-4835(一种CDK12/CDK13抑制剂)的敏感性,为ARID1A突变肿瘤患者提供了一种有希望的治疗方法。敲除ADAR1恢复了ARID1A缺陷细胞对SR-4835处理的敏感性。
    结论:ARID1A缺乏通过调节ADAR1促进CDK13的RNA编辑。
    BACKGROUND: ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, is thought to play a significant role both in tumor suppression and tumor initiation, which is highly dependent upon context. Previous studies have suggested that ARID1A deficiency may contribute to cancer development. The specific mechanisms of whether ARID1A loss affects tumorigenesis by RNA editing remain unclear.
    RESULTS: Our findings indicate that the deficiency of ARID1A leads to an increase in RNA editing levels and alterations in RNA editing categories mediated by adenosine deaminases acting on RNA 1 (ADAR1). ADAR1 edits the CDK13 gene at two previously unidentified sites, namely Q113R and K117R. Given the crucial role of CDK13 as a cyclin-dependent kinase, we further observed that ADAR1 deficiency results in changes in the cell cycle. Importantly, the sensitivity of ARID1A-deficient tumor cells to SR-4835, a CDK12/CDK13 inhibitor, suggests a promising therapeutic approach for individuals with ARID1A-mutant tumors. Knockdown of ADAR1 restored the sensitivity of ARID1A deficient cells to SR-4835 treatment.
    CONCLUSIONS: ARID1A deficiency promotes RNA editing of CDK13 by regulating ADAR1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:绒毛膜羊膜炎(CAM)涉及绒毛膜和羊膜的感染和炎症,但目前尚无有效的CAM诊断生物标志物。
    方法:我们研究了来自胎膜早破(PROM)的绒毛膜和羊膜标本中作用于RNA1的RNA编辑酶腺苷脱氨酶家族(ADAR1)与CAM之间的相关性,CAM(病理诊断),和临床CAM(临床诊断)患者使用逆转录聚合酶链反应(RT-PCR)。
    结果:ADAR1在CAM和临床CAM患者的绒毛膜和羊膜标本中上调(p<0.001和p=0.005)。在诊断CAM和临床CAM患者中,ADAR1的曲线下面积(AUC)(0.735和0.828)明显高于炎症特征标志物。对于CAM和临床CAM患者,ADAR1也具有显著高于临床特征的AUC(0.701和0.837)。
    结论:ADAR1可以作为CAM患者的一种有用的诊断生物标志物。
    BACKGROUND: Chorioamnionitis (CAM) involves infection and inflammation of the chorion and amniotic membrane, but there are still no effective diagnostic biomarkers for CAM.
    METHODS: We investigated the correlation between RNA editing enzyme Adenosine deaminase family acting on RNA 1 (ADAR1) and CAM in chorion and amniotic membrane specimens derived from premature rupture of the membrane (PROM), CAM (pathologically diagnosed), and clinical CAM (clinically diagnosed) patients using reverse transcription polymerase chain reaction (RT-PCR).
    RESULTS: ADAR1 was upregulated in the chorion and amniotic membrane specimens of CAM and clinical CAM patients (p < 0.001 and p = 0.005). ADAR1 had a significantly higher area under the curve (AUC) (0.735 and 0.828) than markers of inflammation characteristics in diagnosing CAM and clinical CAM patients. ADAR1 also had significantly higher AUC (0.701 and 0.837) than clinical characteristics for CAM and clinical CAM patients.
    CONCLUSIONS: ADAR1 can be a useful diagnostic biomarker in CAM patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号