5′UTR variants

  • 文章类型: Journal Article
    A considerable number of deposited variants has provided new possibilities for knowledge discovery in different types of prostate cancer. Here, we analyzed variants located on 3\'UTR, 5\'UTR, CDs, Intergenic, and Intronic regions in castration-resistant prostate cancer (8496 variants), familial prostate cancer (3241 variants), metastatic castration-resistant prostate cancer (3693 variants), and prostate cancer (16599 variants). Chromosome regions 10p15-p14 and 2p13 were highly enriched (P < 0.00001) for variants located in 3\'UTR, 5\'UTR, CDs, intergenic, and intronic regions in castration-resistant prostate cancer. In contrast, 10p15-p14, 10q23.3, 12q13.11, 13q12.3, 1q25, and 8p22 regions were enriched (P < 0.001) in familial prostate cancer. In metastatic castration-resistant prostate cancer, 10p15-p14, 10q23.3, 11q22-q23, 14q21.1, and 14q32.13 were highly variant regions (P < 0.001). Chromosome 2 and chromosome 1 hosted many enriched variant regions. AKR1C3, BRCA1, BRCA2, CHGA, CYP19A1, HOXB13, KLK3, and PTEN contained the highest number of 3\'UTR, 5\'UTR, CDs, Intergenic, and Intronic variants. Network analysis showed that these genes are upstream of important functions including prostate gland development, tumor recurrence, prostate cancer-specific survival, tumor progression, cancer mortality, long-term survival, cancer recurrence, angiogenesis, and AR. Interestingly, all of EGFR, JAK2, NR3C1, PDZD2, and SEMA3C genes had single nucleotide polymorphisms (SNP) in castration-resistant prostate cancer, consistent with high selection pressure on these genes during drug treatment and consequent resistance. High occurrence of variants in 3\'UTRs suggests the importance of regulatory variants in different types of prostate cancer; an area that has been neglected compared with coding variants. This study provides a comprehensive overview of genomic regions contributing to different types of prostate cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Leber congenital amaurosis (LCA) is a severe autosomal-recessive retinal dystrophy leading to congenital blindness. A recently identified LCA gene is NMNAT1, located in the LCA9 locus. Although most mutations in blindness genes are coding variations, there is accumulating evidence for hidden noncoding defects or structural variations (SVs). The starting point of this study was an LCA9-associated consanguineous family in which no coding mutations were found in the LCA9 region. Exploring the untranslated regions of NMNAT1 revealed a novel homozygous 5\'UTR variant, c.-70A>T. Moreover, an adjacent 5\'UTR variant, c.-69C>T, was identified in a second consanguineous family displaying a similar phenotype. Both 5\'UTR variants resulted in decreased NMNAT1 mRNA abundance in patients\' lymphocytes, and caused decreased luciferase activity in human retinal pigment epithelial RPE-1 cells. Second, we unraveled pseudohomozygosity of a coding NMNAT1 mutation in two unrelated LCA patients by the identification of two distinct heterozygous partial NMNAT1 deletions. Molecular characterization of the breakpoint junctions revealed a complex Alu-rich genomic architecture. Our study uncovered hidden genetic variation in NMNAT1-associated LCA and emphasized a shift from coding to noncoding regulatory mutations and repeat-mediated SVs in the molecular pathogenesis of heterogeneous recessive disorders such as hereditary blindness.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号