2D TMDCs

2D TMDC
  • 文章类型: Journal Article
    过渡金属二硫属化物(TMDC)是用于生物传感应用的多功能二维(2D)纳米材料,由于其优异的物理和化学性质。由于生物材料的目标特性,生物传感器的最大挑战是提高其灵敏度和稳定性。在环境分析中,TMDC已经展示了卓越的污染物检测和去除能力。它们的高表面积,可调的电子特性,和化学反应性使它们成为针对各种污染物的传感器和吸附剂的理想选择,包括重金属,有机污染物,和新兴的污染物。此外,其独特的电子和光学特性使灵敏的检测技术,增强我们监测和减轻环境污染的能力。在食物分析中,基于TMDC的纳米材料在确保食品安全和质量方面显示出巨大的潜力。这些纳米材料对检测污染物具有很高的特异性和灵敏度,病原体,和各种食物基质中的掺假物。它们集成到传感器平台中,可实现快速和现场分析,减少对集中实验室的依赖,促进食品供应链的及时干预。在生物医学研究中,基于TMDC的纳米材料已在诊断和治疗应用中表现出显著的进展。它们的生物相容性,表面功能化的多功能性,和光热特性为新的疾病检测铺平了道路,药物输送,和靶向治疗方法。此外,基于TMDC的纳米材料在成像模式中显示出希望,为各种医学成像技术提供增强的对比度和分辨率。本文提供了基于2DTMDC的生物传感器的全面概述,强调环境中对先进传感技术日益增长的需求,食物,生物医学分析。
    Transition metal dichalcogenides (TMDCs) are versatile two-dimensional (2D) nanomaterials used in biosensing applications due to their excellent physical and chemical properties. Due to biomaterial target properties, biosensors\' most significant challenge is improving their sensitivity and stability. In environmental analysis, TMDCs have demonstrated exceptional pollutant detection and removal capabilities. Their high surface area, tunable electronic properties, and chemical reactivity make them ideal for sensors and adsorbents targeting various contaminants, including heavy metals, organic pollutants, and emerging contaminants. Furthermore, their unique electronic and optical properties enable sensitive detection techniques, enhancing our ability to monitor and mitigate environmental pollution. In the food analysis, TMDCs-based nanomaterials have shown remarkable potential in ensuring food safety and quality. These nanomaterials exhibit high specificity and sensitivity for detecting contaminants, pathogens, and adulterants in various food matrices. Their integration into sensor platforms enables rapid and on-site analysis, reducing the reliance on centralized laboratories and facilitating timely interventions in the food supply chain. In biomedical studies, TMDCs-based nanomaterials have demonstrated significant strides in diagnostic and therapeutic applications. Their biocompatibility, surface functionalization versatility, and photothermal properties have paved the way for novel disease detection, drug delivery, and targeted therapy approaches. Moreover, TMDCs-based nanomaterials have shown promise in imaging modalities, providing enhanced contrast and resolution for various medical imaging techniques. This article provides a comprehensive overview of 2D TMDCs-based biosensors, emphasizing the growing demand for advanced sensing technologies in environmental, food, and biomedical analysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    公众和社会越来越认识到许多严重的环境问题,包括水污染,归因于工业化和农业的迅速扩张。可再生能源驱动的催化高级氧化工艺(AOP)代表了绿色,可持续,和环境友好的方法来满足环境修复的需求。在这种情况下,2D过渡金属二硫属化合物(TMDC)压电材料,它们的非中心对称晶体结构,展示独特的功能。它们产生偶极子极化,诱导产生极化空穴和电子并触发氧化还原反应的内置电场,从而促进活性氧的产生,用于废水污染物的修复。已经在自集成的类Fenton过程和过硫酸盐活化过程中探索了广泛的2DTMDC压电材料。这些材料提供了比传统方法更简单和实用的方法。因此,这篇综述重点介绍了2DTMDC压电催化剂的最新进展及其通过压电催化驱动的AOPs在废水污染物修复中的作用,如类Fenton工艺和基于硫酸根的氧化工艺。
    The public and society have increasingly recognized numerous grave environmental issues, including water pollution, attributed to the rapid expansion of industrialization and agriculture. Renewable energy-driven catalytic advanced oxidation processes (AOPs) represent a green, sustainable, and environmentally friendly approach to meet the demands of environmental remediation. In this context, 2D transition metal dichalcogenides (TMDCs) piezoelectric materials, with their non-centrosymmetric crystal structure, exhibit unique features. They create dipole polarization, inducing a built-in electric field that generates polarized holes and electrons and triggers redox reactions, thereby facilitating the generation of reactive oxygen species for wastewater pollutant remediation. A broad spectrum of 2D TMDCs piezoelectric materials have been explored in self-integrated Fenton-like processes and persulfate activation processes. These materials offer a more simplistic and practical method than traditional approaches. Consequently, this review highlights recent advancements in 2D TMDCs piezoelectric catalysts and their roles in wastewater pollutant remediation through piezocatalytic-driven AOPs, such as Fenton-like processes and sulfate radicals-based oxidation processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    二维过渡金属二硫属化物(2DTMDC)被认为是Si作为通道材料的有希望的替代品,因为即使在原子体厚度下也有可能保持其优异的电子传输性能。然而,由于由间隙状态引起的费米能级钉扎(FLP)以及金属接触和沟道层内固有的高肖特基势垒高度(SBH),高性能2DTMDC场效应晶体管的实现仍然是一个挑战。这项研究表明,可以通过将半金属TiS2沉积到单层(ML)MoS2上来形成高质量的基于范德华(vdW)异质结的触点。在确认成功形成TiS2/MLMoS2异质结后,详细研究了vdW半金属TiS2的接触性能。具有TiS2/MLMoS2异质结的干净界面,原子层沉积TiS2可以诱导间隙态饱和并抑制FLP。因此,与传统的蒸发金属电极相比,TiS2/MLMoS2异质结表现出较低的8.54meV的SBH和更好的接触性能。这个,反过来,大大提高了设备的整体性能,包括它的当前电流,亚阈值摆动,和阈值电压。此外,我们相信,我们提出的基于vdW的接触形成策略将有助于开发下一代电子产品中使用的2D材料。
    Two-dimensional transition metal dichalcogenides (2D TMDCs) are considered promising alternatives to Si as channel materials because of the possibility of retaining their superior electronic transport properties even at atomic body thicknesses. However, the realization of high-performance 2D TMDC field-effect transistors remains a challenge owing to Fermi-level pinning (FLP) caused by gap states and the inherent high Schottky barrier height (SBH) within the metal contact and channel layer. This study demonstrates that high-quality van der Waals (vdW) heterojunction-based contacts can be formed by depositing semimetallic TiS2 onto monolayer (ML) MoS2. After confirming the successful formation of a TiS2/ML MoS2 heterojunction, the contact properties of vdW semimetal TiS2 were thoroughly investigated. With clean interfaces of the TiS2/ML MoS2 heterojunctions, atomic-layer-deposited TiS2 can induce gap-state saturation and suppress FLP. Consequently, compared with conventional evaporated metal electrodes, the TiS2/ML MoS2 heterojunctions exhibit a lower SBH of 8.54 meV and better contact properties. This, in turn, substantially improves the overall performance of the device, including its on-current, subthreshold swing, and threshold voltage. Furthermore, we believe that our proposed strategy for vdW-based contact formation will contribute to the development of 2D materials used in next-generation electronics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    如今,人们对快速的兴趣越来越大,准确,和高度敏感的智能气体传感器,具有出色的选择性,这得益于对环境安全和医疗保健应用的高需求。已经进行了大量研究以开发基于新型高灵敏度和选择性材料的传感器。已经探索了计算和实验研究,以确定为气体分子吸附提供最大活性位置的关键因素,包括通过纳米结构的带隙调谐。金属/金属氧化物催化反应,和纳米结形成。然而,仍然有很大的挑战,特别是在选择性方面,这就需要结合跨学科领域来构建更智能和高性能的气体/化学传感设备。这篇综述讨论了当前主要的气体传感性能增强方法,他们的优势,和限制,特别是在选择性和长期稳定性方面。然后,讨论建立了一个使用智能机器学习技术的案例,提供有效的数据处理方法,用于开发高选择性智能气体传感器。我们强调静态的有效性,动态,和频域特征提取技术。此外,交叉验证方法也包括在内;特别是,讨论了k折交叉验证的操作,以根据可用数据集准确地训练模型。我们总结了不同的化学电阻和FET气体传感器,并强调了它们的缺点,然后提出机器学习的潜力作为一个可能和可行的选择。评论得出的结论是,机器学习在构建下一代智能方面可能非常有前途。敏感,和选择性传感器。
    Nowadays, there is increasing interest in fast, accurate, and highly sensitive smart gas sensors with excellent selectivity boosted by the high demand for environmental safety and healthcare applications. Significant research has been conducted to develop sensors based on novel highly sensitive and selective materials. Computational and experimental studies have been explored in order to identify the key factors in providing the maximum active location for gas molecule adsorption including bandgap tuning through nanostructures, metal/metal oxide catalytic reactions, and nano junction formations. However, there are still great challenges, specifically in terms of selectivity, which raises the need for combining interdisciplinary fields to build smarter and high-performance gas/chemical sensing devices. This review discusses current major gas sensing performance-enhancing methods, their advantages, and limitations, especially in terms of selectivity and long-term stability. The discussion then establishes a case for the use of smart machine learning techniques, which offer effective data processing approaches, for the development of highly selective smart gas sensors. We highlight the effectiveness of static, dynamic, and frequency domain feature extraction techniques. Additionally, cross-validation methods are also covered; in particular, the manipulation of the k-fold cross-validation is discussed to accurately train a model according to the available datasets. We summarize different chemresistive and FET gas sensors and highlight their shortcomings, and then propose the potential of machine learning as a possible and feasible option. The review concludes that machine learning can be very promising in terms of building the future generation of smart, sensitive, and selective sensors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    最近,二维过渡金属二硫属化合物(2DTMDC)在许多领域引起了一定的关注。二维TMDC独特多样的电子结构和超薄的片状结构为推动石墨烯等其他二维纳米材料的发展、拓展无机二维纳米材料在诸多领域的广泛应用提供了契机。为了更好地理解2DTMDC,人们需要知道它们的合成和修饰方法,以及它们的潜在应用和可能的生物毒性。在这里,我们总结了2DTMDCs的最新研究进展,特别关注其生物医学应用和潜在的健康风险。首先,二维TMDC的两种合成方法,自上而下和自下而上,并对其表面功能化的方法进行了综述。其次,二维TMDC在生物医学领域的应用,包括药物装载,光热疗法,对生物成像和生物传感器进行了综述。之后,我们介绍了2DTMDCs生物安全性评价的现有研究。最后,我们讨论了当前研究的主要研究差距以及未来研究面临的挑战和应对策略。
    Recently, two-dimensional transition metal dichalcogenides (2D TMDCs) have drawn certain attentions in many fields. The unique and diversified electronic structure and ultrathin sheet structure of 2D TMDCs offer opportunities for moving ahead of other 2D nanomaterials such as graphene and expanding the wide application of inorganic 2D nanomaterials in many fields. For a better understanding of 2D TMDCs, one needs to know methods for their synthesis and modification, as well as their potential applications and possible biological toxicity. Herein, we summarized the recent research progress of 2D TMDCs with particular focus on their biomedical applications and potential health risks. Firstly, two kinds of synthesis methods of 2D TMDCs, top-down and bottom-up, and methods for their surface functionalization are reviewed. Secondly, the applications of 2D TMDCs in the field of biomedicine, including drug loading, photothermal therapy, biological imaging and biosensor were summarized. After that, we presented the existing researches on biosafety evaluation of 2D TMDCs. At last, we discussed major research gap in current researches and challenges and coping strategies in future studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    过渡金属二硫属化合物(TMDC)生长中的结构域形态主要是三角形的,但很少是树枝状的。这里,我们报告了一种强大的化学气相沉积方法,在具有不同晶格结构的几个单晶衬底上制造原子薄2H相MoS2枝晶,如金红石-TiO2(001),SrTiO3(001),和蓝宝石(0001)。发现通过调整Mo吸附原子的浓度,这些衬底上MoS2域的形态从低Mo浓度的三齿枝晶演变为中等Mo浓度的半紧密分形域,并在高Mo浓度下形成紧凑的三角形。第一性原理计算表明,Mo的边缘扩散势垒与附着势垒相当,抑制Mo原子沿边缘的快速扩散。具有不同Mo浓度的动力学蒙特卡罗模拟很好地再现了实验结果。我们的联合实验和理论分析显然表明,MoS2树枝状结构域在低Mo浓度下的生长是一个非平衡过程,由Mo吸附原子的动力学主导。我们的研究提供了通过简单地调整过渡金属吸附原子浓度来控制TMDC形态的有效途径。
    The domain morphology in the growth of transition-metal dichalcogenides (TMDCs) is mostly triangular but rarely dendritic. Here, we report a robust chemical vapor deposition method to fabricate atomic-thin 2H-phase MoS2 dendrites on several single-crystalline substrates with different lattice structures, such as rutile-TiO2(001), SrTiO3(001), and sapphire(0001). It is found that by tuning the concentration of Mo adatoms, the morphology of MoS2 domains on these substrates evolves from tridentate dendrites at a low Mo concentration to semicompact fractal domains at an intermediate Mo concentration, and to a compact triangular shape at a high Mo concentration. First-principles calculations reveal that the edge diffusion barrier of Mo is comparable to the attachment barrier, inhibiting fast Mo atom diffusion along the edge. Kinetics Monte Carlo simulations with varying Mo concentrations well reproduce the experimental results. Our combined experimental and theoretical analyses evidently show that the growth of MoS2 dendritic domains at a low Mo concentration is a nonequilibrium process, which is dominated by the kinetics of Mo adatoms. Our study presents an effective route to control the morphology of TMDCs by simply tuning the transition-metal adatom concentration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号