2,3-oxidosqualene cyclase (OSC)

  • 文章类型: Journal Article
    来自山茶属物种的三萜类包括具有巨大治疗潜力的多种生物活性化合物。然而,茶树(茶树)中的三萜生物合成仍然难以捉摸。这里,我们从茶基因组中鉴定了八个推定的2,3-氧化角鲨烯环化酶(OSC)基因(CsOSC1-8),并通过在酵母和烟草中的异源表达以及在茶树中的瞬时过表达来表征五个基因的功能。CsOSC1被发现是一种β-淀粉酶合成酶,而CsOSC4、5和6表现出多功能α-amyrin合酶活性。分子对接和定点诱变表明,CsOSC6M259T/W260L双突变体产量>40%羽扇豆醇,而单独的CsOSC1W259L单突变体足以生产羽扇豆醇。CsOSC5中的V732F突变改变了产物从friedelin到taraxasterol和Φ-taraxasterol的形成。环阿替烯醇合酶CsOSC8中的L254M突变增强了催化活性。我们的发现揭示了控制茶树中三萜多样性的分子基础,并为OSC工程提供了潜在的途径。
    Triterpenoids from Camellia species comprise a diverse class of bioactive compounds with great therapeutic potential. However, triterpene biosynthesis in tea plants (Camellia sinensis) remains elusive. Here, we identified eight putative 2,3-oxidosqualene cyclase (OSC) genes (CsOSC1-8) from the tea genome and characterized the functions of five through heterologous expression in yeast and tobacco and transient overexpression in tea plants. CsOSC1 was found to be a β-amyrin synthase, whereas CsOSC4, 5, and 6 exhibited multifunctional α-amyrin synthase activity. Molecular docking and site-directed mutagenesis showed that the CsOSC6M259T/W260L double mutant yielded >40% lupeol, while the CsOSC1 W259L single mutant alone was sufficient for lupeol production. The V732F mutation in CsOSC5 altered product formation from friedelin to taraxasterol and ψ-taraxasterol. The L254 M mutation in the cycloartenol synthase CsOSC8 enhanced the catalytic activity. Our findings shed light on the molecular basis governing triterpene diversity in tea plants and offer potential avenues for OSC engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物活性三萜具有复杂的稠环结构,主要由最初的酶形成,2,3-氧化角鲨烯环化酶(OSC)在植物三萜生物合成中的作用。三萜与B,C环开放的骨骼极其罕见,形成机制未知,藏有未知的化学和生物学。这里,通过挖掘藜麦的基因组,然后进行功能表征,我们确定了一种能够产生B的应激反应性和新功能化的OSC,C-环开三萜,包括作为专门的表皮膀胱细胞的蜡成分的山茶酚A和B以及新型的(-)-羟基喹啉A,即喹啉合酶(CqQS)。蛋白质结构分析,然后进行定点突变,确定了五环β-amyrin合酶(CqbAS1)和B之间功能性相互转换的关键可变氨基酸位点,C-开环三萜合酶CqQS。一个关键残基(N612K)的突变甚至在进化上遥远的拟南芥β-amyrin合酶可以产生喹啉,表明B的保守机制,植物中C-开环三萜的形成。量子计算与对接实验相结合进一步表明,CqQS的保守W613和F413的构象可能是选择性地稳定中间碳阳离子朝向B的关键,C-开环三萜的形成。我们的发现揭示了藜麦三萜骨骼多样性和B,C-开环三萜生物合成,为获得其化学和生物学开辟了途径,并为藜麦性状工程和质量改进铺平了道路。
    Bioactive triterpenes feature complex fused-ring structures, primarily shaped by the first-committed enzyme, 2,3-oxidosqualene cyclases (OSCs) in plant triterpene biosynthesis. Triterpenes with B,C-ring-opened skeletons are extremely rare with unknown formation mechanisms, harbouring unchartered chemistry and biology. Here, through mining the genome of Chenopodium quinoa followed by functional characterization, we identified a stress-responsive and neofunctionalized OSC capable of generating B,C-ring-opened triterpenes, including camelliol A and B and the novel (-)-quinoxide A as wax components of the specialized epidermal bladder cells, namely the quinoxide synthase (CqQS). Protein structure analysis followed by site-directed mutagenesis identified key variable amino acid sites underlying functional interconversion between pentacyclic β-amyrin synthase (CqbAS1) and B,C-ring-opened triterpene synthase CqQS. Mutation of one key residue (N612K) in even evolutionarily distant Arabidopsis β-amyrin synthase could generate quinoxides, indicating a conserved mechanism for B,C-ring-opened triterpene formation in plants. Quantum computation combined with docking experiments further suggests that conformations of conserved W613 and F413 of CqQS might be key to selectively stabilizing intermediate carbocations towards B,C-ring-opened triterpene formation. Our findings shed light on quinoa triterpene skeletal diversity and mechanisms underlying B,C-ring-opened triterpene biosynthesis, opening avenues towards accessing their chemistry and biology and paving the way for quinoa trait engineering and quality improvement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号