neural development

神经发育
  • 文章类型: Journal Article
    生命早期发生的营养波动决定了代谢适应,这将影响生命后期对体重增加和肥胖的易感性。小鼠的出生后时期代表了下丘脑发育动态变化的时间,并且在哺乳期(MHFD)期间母体消耗高脂肪饮食会改变牛奶的组成并导致后代对肥胖的敏感性增强。下丘脑弓状核(ARH)中的Agouti相关肽(AgRP)神经元对多种代谢信号的变化作出反应,并将神经内分泌信息分配到其他大脑区域,例如下丘脑室旁核(PVH),众所周知,它可以整合各种调节体重的信号。从AgRP神经元到PVH的神经投射发生在哺乳期,这些投射在MHFD后代中减少,但潜在的发育机制在很大程度上仍然未知。小胶质细胞是中枢神经系统的固有免疫细胞,参与神经连接的改善和突触传递的调节。因为高脂肪饮食暴露会导致成人小胶质细胞激活,类似的激活可能发生在暴露于MHFD的后代中,并在雕刻下丘脑馈送电路中起作用。遗传靶向的轴突标记和免疫组织化学用于可视化源自MHFD大坝的出生后小鼠中的AgRP轴突和小胶质细胞,并量化形态变化。结果表明,MHFD后代PVH中小胶质细胞形态的局部变化表明监测活动增强,并且在时间上仅限于AgRP神经元支配PVH的时期。此外,轴突标记实验证实了MHFD后代中PVH的AgRP神经支配显着降低,并提供了对PVH的AgRP输入突触修剪的直接证据。使用集落刺激因子1受体抑制剂PLX5622的小胶质细胞耗竭确定,在MHFD后代中观察到的AgRP神经支配的减少取决于小胶质细胞,并且小胶质细胞是MHFD大坝后代断奶时最早出现的体重增加所必需的。然而,这些变化似乎并不依赖于小胶质细胞介导的突触修剪的程度。一起,这些发现表明,小胶质细胞通过暴露于MHFD而被激活,并在发育过程中直接与AgRP轴突相互作用,从而永久改变其密度,与代谢表型的发育编程有关。
    母体高脂肪饮食暴露导致人类和多种动物模型中负面健康结果的风险增加。在这里,我们证明了小胶质细胞是由孕妇高脂肪饮食暴露引起的体重变化和下丘脑回路扰动所必需的,这仅限于哺乳期。我们确定了小胶质细胞在空间和时间上有限的形态变化,这些变化反映了监视活动的增强,并与下丘脑回路形成的关键时期一致。我们还确定了小胶质细胞和发育中的轴突之间的直接细胞相互作用,以及突触吞噬的证据,虽然这种机制似乎不负责改变由母亲高脂肪饮食暴露引起的神经模式。这些发现共同确定了小胶质细胞在确定发育过程中对母体高脂肪饮食暴露的下丘脑神经支配模式中的重要作用。这可能有助于代谢表型的发育编程。
    Nutritional fluctuations that occur early in life dictate metabolic adaptations that will affect susceptibility to weight gain and obesity later in life. The postnatal period in mice represents a time of dynamic changes in hypothalamic development and maternal consumption of a high fat diet during the lactation period (MHFD) changes the composition of milk and leads to enhanced susceptibility to obesity in offspring. Agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus (ARH) react to changes in multiple metabolic signals and distribute neuroendocrine information to other brain regions, such as the paraventricular hypothalamic nucleus (PVH), which is known to integrate a variety of signals that regulate body weight. Development of neural projections from AgRP neurons to the PVH occurs during the lactation period and these projections are reduced in MHFD offspring, but underlying developmental mechanisms remain largely unknown. Microglia are the resident immune cells of the central nervous system and are involved in refinement of neural connections and modulation of synaptic transmission. Because high fat diet exposure causes activation of microglia in adults, a similar activation may occur in offspring exposed to MHFD and play a role in sculpting hypothalamic feeding circuitry. Genetically targeted axonal labeling and immunohistochemistry were used to visualize AgRP axons and microglia in postnatal mice derived from MHFD dams and morphological changes quantified. The results demonstrate regionally localized changes to microglial morphology in the PVH of MHFD offspring that suggest enhanced surveillance activity and are temporally restricted to the period when AgRP neurons innervate the PVH. In addition, axon labeling experiments confirm a significant decrease in AgRP innervation of the PVH in MHFD offspring and provide direct evidence of synaptic pruning of AgRP inputs to the PVH. Microglial depletion with the Colony-stimulating factor 1 receptor inhibitor PLX5622 determined that the decrease in AgRP innervation observed in MHFD offspring is dependent on microglia, and that microglia are required for weight gain that emerges as early as weaning in offspring of MHFD dams. However, these changes do not appear to be dependent on the degree of microglial mediated synaptic pruning. Together, these findings suggest that microglia are activated by exposure to MHFD and interact directly with AgRP axons during development to permanently alter their density, with implications for developmental programming of metabolic phenotype.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    外显子连接复合物(EJC),通过EIF4A3成核,对于整个真核生物的mRNA命运和功能是必不可少的。我们发现EIF4A3直接控制微管,独立于RNA,这对神经布线至关重要。虽然发育中的小鼠大脑皮层中的神经元存活取决于完整的EJC,轴突束发育只需要Eif4a3。利用人类皮质类器官,我们表明EIF4A3疾病突变也会损害神经元的生长,突出与神经发育病理学相关的保守功能。生长中的神经元的实时成像显示EIF4A3对于微管动力学至关重要。采用生物化学和竞赛实验,我们证明EIF4A3直接与微管结合,EJC的相互排斥。最后,体外重建测定和拯救实验表明,EIF4A3足以促进微管聚合,并且EIF4A3-微管缔合是轴突生长的主要贡献者。这揭示了神经元重新利用核心基因表达机制直接控制细胞骨架的基本机制。
    The exon junction complex (EJC), nucleated by EIF4A3, is indispensable for mRNA fate and function throughout eukaryotes. We discover that EIF4A3 directly controls microtubules, independent of RNA, which is critical for neural wiring. While neuronal survival in the developing mouse cerebral cortex depends upon an intact EJC, axonal tract development requires only Eif4a3. Using human cortical organoids, we show that EIF4A3 disease mutations also impair neuronal growth, highlighting conserved functions relevant for neurodevelopmental pathology. Live imaging of growing neurons shows that EIF4A3 is essential for microtubule dynamics. Employing biochemistry and competition experiments, we demonstrate that EIF4A3 directly binds to microtubules, mutually exclusive of the EJC. Finally, in vitro reconstitution assays and rescue experiments demonstrate that EIF4A3 is sufficient to promote microtubule polymerization and that EIF4A3-microtubule association is a major contributor to axon growth. This reveals a fundamental mechanism by which neurons re-utilize core gene expression machinery to directly control the cytoskeleton.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:越来越多的证据表明,相当比例的疾病相关突变发生在增强子中,基因调控所必需的非编码DNA区域。了解这种变化影响的监管计划的结构和机制可以阐明人类疾病的设备。
    结果:我们从神经分化的七个早期时间点收集表观遗传和基因表达数据集。围绕这个模型系统,我们构建了增强子-启动子相互作用的网络,每个都处于神经诱导的个体阶段。这些网络是一系列丰富分析的基础,通过它,我们证明了它们对各种疾病相关变异的时间动态和富集。我们将Girvan-Newman聚类算法应用于这些网络,以揭示生物学相关的调控子结构。此外,我们展示了使用转录因子过表达和大规模平行报告子试验验证预测的增强子-启动子相互作用的方法。
    结论:我们的研究结果为探索基因调控程序及其在发育过程中的动态提供了一个可推广的框架;这包括研究疾病相关变异对转录网络影响的综合方法。应用于我们网络的技术已经作为计算工具与我们的发现一起发布,E-P-INAnalyzer。我们的程序可以在不同的细胞环境和疾病中使用。
    BACKGROUND: Increasing evidence suggests that a substantial proportion of disease-associated mutations occur in enhancers, regions of non-coding DNA essential to gene regulation. Understanding the structures and mechanisms of the regulatory programs this variation affects can shed light on the apparatuses of human diseases.
    RESULTS: We collect epigenetic and gene expression datasets from seven early time points during neural differentiation. Focusing on this model system, we construct networks of enhancer-promoter interactions, each at an individual stage of neural induction. These networks serve as the base for a rich series of analyses, through which we demonstrate their temporal dynamics and enrichment for various disease-associated variants. We apply the Girvan-Newman clustering algorithm to these networks to reveal biologically relevant substructures of regulation. Additionally, we demonstrate methods to validate predicted enhancer-promoter interactions using transcription factor overexpression and massively parallel reporter assays.
    CONCLUSIONS: Our findings suggest a generalizable framework for exploring gene regulatory programs and their dynamics across developmental processes; this includes a comprehensive approach to studying the effects of disease-associated variation on transcriptional networks. The techniques applied to our networks have been published alongside our findings as a computational tool, E-P-INAnalyzer. Our procedure can be utilized across different cellular contexts and disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    早期大脑皮层网络的成熟涉及远程轴突连接的重大重组。在最近的一项研究中,布拉格-贡萨洛,阿奎莱拉,etal.在老鼠身上发现,S1L4call体投射神经元发送的半球间连接通过严格控制同侧突触整合而被修剪,依赖于特定中间神经元的早期活动。
    The maturation of cerebral cortical networks during early life involves a major reorganization of long-range axonal connections. In a recent study, Bragg-Gonzalo, Aguilera, et al. discovered that in mice, the interhemispheric connections sent by S1L4 callosal projection neurons are pruned via the tight control of their ipsilateral synaptic integration, which relies on the early activity of specific interneurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电兴奋性-激发和传播动作电位的能力-是神经元的特征。神经元在发育过程中如何变得兴奋以及兴奋性是否是神经元的内在属性尚不清楚。这里,我们证明了施万细胞,周围神经系统中最丰富的胶质细胞,在发育过程中促进体感神经元的兴奋性。我们发现雪旺氏细胞分泌前列腺素E2,这对于诱导发育中的体感神经元表达神经元功能所需的正常水平的基因是必要和充分的,包括电压门控钠通道,并发射动作电位列车。在雪旺细胞中激活该信号通路会损害体感神经元的成熟,导致持续到成年的多模态感觉缺陷。总的来说,我们的研究揭示了前列腺素E2的神经发育作用与其在炎症中的既定作用不同,揭示了神经胶质调节神经元兴奋性以实现正常感觉功能发育的细胞非自主机制。
    Electrical excitability-the ability to fire and propagate action potentials-is a signature feature of neurons. How neurons become excitable during development and whether excitability is an intrinsic property of neurons remain unclear. Here, we demonstrate that Schwann cells, the most abundant glia in the peripheral nervous system, promote somatosensory neuron excitability during development. We find that Schwann cells secrete prostaglandin E2, which is necessary and sufficient to induce developing somatosensory neurons to express normal levels of genes required for neuronal function, including voltage-gated sodium channels, and to fire action potential trains. Inactivating this signaling pathway in Schwann cells impairs somatosensory neuron maturation, causing multimodal sensory defects that persist into adulthood. Collectively, our studies uncover a neurodevelopmental role for prostaglandin E2 distinct from its established role in inflammation, revealing a cell non-autonomous mechanism by which glia regulate neuronal excitability to enable the development of normal sensory functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在脊椎动物视网膜中,相同类型的单个神经元以称为马赛克的模式规则地分布在整个组织中。在发育过程中马赛克的建立需要同型神经元之间的细胞-细胞排斥,但是这种排斥背后的机制仍然未知。这里,我们展示了两种小鼠视网膜细胞类型,星爆无长突细胞关闭和开启,通过使用它们的树突状乔木排斥相邻的同型躯体来建立马赛克间距。使用转基因工具和单细胞标记,我们确定了星爆躯体与邻近的星爆树突接触的发育期;这些有助于排除躯体在邻居的树突状领土内定居。树枝状体排斥是由MEGF10介导的,MEGF10是星爆镶嵌图案形成所需的细胞表面分子。我们的结果表明,树枝状体排斥是星爆镶嵌间距的关键机制,并提高了这可能是跨许多细胞类型和物种进行镶嵌图案形成的一般机制的可能性。
    In vertebrate retina, individual neurons of the same type are distributed regularly across the tissue in a pattern known as a mosaic. Establishment of mosaics during development requires cell-cell repulsion among homotypic neurons, but the mechanisms underlying this repulsion remain unknown. Here, we show that two mouse retinal cell types, OFF and ON starburst amacrine cells, establish mosaic spacing by using their dendritic arbors to repel neighboring homotypic somata. Using transgenic tools and single-cell labeling, we identify a developmental period when starburst somata are contacted by neighboring starburst dendrites; these serve to exclude somata from settling within the neighbor\'s dendritic territory. Dendrite-soma exclusion is mediated by MEGF10, a cell-surface molecule required for starburst mosaic patterning. Our results implicate dendrite-soma exclusion as a key mechanism underlying starburst mosaic spacing and raise the possibility that this could be a general mechanism for mosaic patterning across many cell types and species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    雌激素和雌激素化学物质是内分泌干扰化学物质(EDCs)。EDCs对人类和水生生物的潜在毒性已日益引起人们的关注。然而,目前,EDC对神经和血管发育的潜在毒性机制仍在充分研究中。在研究期间,我们利用斑马鱼评估不同雌激素的发育神经和血管毒性。结果表明,不同雌激素处理的斑马鱼,尤其是E2,表现出发育畸形,包括死亡率上升,身体长度减少,心率下降,游泳行为异常,发育畸形增加,包括脊柱弯曲(SC),蛋黄水肿(YE)和周围水肿(PE),以剂量依赖性方式治疗72小时。进一步的形态学评估显示,E2暴露显着诱导斑马鱼胚胎的运动神经异常。此外,用这三种雌激素治疗也会损害斑马鱼胚胎早期的血管发育。机械上,下游因子的鉴定揭示了几个关键的神经和血管发育相关基因,包括syn2a,gfap,gap43,shha,kdr,flt1和flt4在斑马鱼雌激素暴露后转录下调,提示雌激素暴露可能通过干扰神经和血管发育相关基因的mRNA水平而引起神经和血管毒性。
    Estrogens and estrogenic chemicals are endocrine-disrupting chemicals (EDCs). The potential toxicity of EDCs to humans and aquatic organisms has become increasingly concerning. However, at present, the potential toxic mechanisms of EDCs on neural and vascular development are still being fully investigated. During the study, we utilized zebrafish to assess the developmental neural and vascular toxicity of different estrogens. The results indicated that zebrafish treated with different estrogens, especially E2, exhibit developmental malformations, including increased mortality, decreased body length, decreased heart rate, aberrant swimming behavior, and increased developmental malformations, including spinal curvature (SC), yolk edema (YE) and pericaidial edema (PE), in a dose-dependent manner with 72 h-treated. Further morphological evaluation revealed that E2 exposure significantly induced motor neural abnormalities in zebrafish embryos. In addition, treated with these three estrogens also impaired the vascular development in the early stage of zebrafish embryos. Mechanistically, the identification of downstream factors revealed that several key neural and vascular development-related genes, including syn2a, gfap, gap43, shha, kdr, flt1 and flt4, were transcriptionally downregulated after estrogen exposure in zebrafish, suggesting that estrogen exposure might cause neural and vascular toxicity by interfering the mRNA levels of genes relevant to neural and vascular development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    体感系统检测周围刺激,这些刺激被转化为生存所必需的行为。鱼类和两栖动物在躯干中拥有两个体感系统:主要的体感系统,由Rohon-Beard神经元形成,和次级体感系统,由背根神经节的神经c细胞衍生的神经元形成。Rohon-Beard神经元的特征是短暂的种群,在生命的最初几天大部分消失,并在功能上被背根神经节取代。这里,我在体内跟踪Rohon-Beard神经元,并表明从受精后1天到幼年阶段,斑马鱼中仍然存在整个库,受精后15天。这些数据表明,斑马鱼保留了两个完整的体感系统,直到至少一个发育阶段,此时动物表现出复杂的行为特征。
    The somatosensory system detects peripheral stimuli that are translated into behaviors necessary for survival. Fishes and amphibians possess two somatosensory systems in the trunk: the primary somatosensory system, formed by the Rohon-Beard neurons, and the secondary somatosensory system, formed by the neural crest cell-derived neurons of the Dorsal Root Ganglia. Rohon-Beard neurons have been characterized as a transient population that mostly disappears during the first days of life and is functionally replaced by the Dorsal Root Ganglia. Here, I follow Rohon-Beard neurons in vivo and show that the entire repertoire remains present in zebrafish from 1-day post-fertilization until the juvenile stage, 15-days post-fertilization. These data indicate that zebrafish retain two complete somatosensory systems until at least a developmental stage when the animals display complex behavioral repertoires.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    特定大脑区域中的神经干/祖细胞(NSPC)在关键发育时期需要精确调节的代谢物产生。嘌呤——DNA的重要组成部分,RNA,和能量载体,如ATP和GTP-是大脑发育的关键代谢产物。嘌呤水平通过两种途径严格控制:从头合成和补救合成。驱动从头途径的酶被组装成一个大的多酶复合物,称为“嘌呤小体”。\"这里,我们综述了嘌呤代谢和嘌呤小体作为神经发育的时空调控因子。值得注意的是,出生后第0天(P0)左右,在小鼠皮层发育过程中,嘌呤合成从从头途径过渡到补救途径。抑制从头途径会影响mTORC1途径并导致特定的前脑畸形。在这次审查中,我们还探讨了新鉴定的NSPC蛋白-NACHT和含WD重复结构域1(Nwd1)-在嘌呤小体形成中蛋白质-蛋白质相互作用的重要性。Nwd1表达降低会破坏嘌呤体的形成,影响NSPC增殖和神经元迁移,导致脑室周围异位症.Nwd1直接与磷酸核糖基氨基咪唑-琥珀羧酰胺合成酶(PAICS)相互作用,参与从头嘌呤合成的酶。我们预计这篇综述将对研究神经发育的研究人员有价值,嘌呤代谢,和蛋白质-蛋白质相互作用。
    Neural stem/progenitor cells (NSPCs) in specific brain regions require precisely regulated metabolite production during critical development periods. Purines-vital components of DNA, RNA, and energy carriers like ATP and GTP-are crucial metabolites in brain development. Purine levels are tightly controlled through two pathways: de novo synthesis and salvage synthesis. Enzymes driving de novo pathway are assembled into a large multienzyme complex termed the \"purinosome.\" Here, we review purine metabolism and purinosomes as spatiotemporal regulators of neural development. Notably, around postnatal day 0 (P0) during mouse cortical development, purine synthesis transitions from the de novo pathway to the salvage pathway. Inhibiting the de novo pathway affects mTORC1 pathway and leads to specific forebrain malformations. In this review, we also explore the importance of protein-protein interactions of a newly identified NSPC protein-NACHT and WD repeat domain-containing 1 (Nwd1)-in purinosome formation. Reduced Nwd1 expression disrupts purinosome formation, impacting NSPC proliferation and neuronal migration, resulting in periventricular heterotopia. Nwd1 interacts directly with phosphoribosylaminoimidazole-succinocarboxamide synthetase (PAICS), an enzyme involved in de novo purine synthesis. We anticipate this review will be valuable for researchers investigating neural development, purine metabolism, and protein-protein interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在神经发育过程中,通过细胞死亡和突触修剪来雕刻早期形成的电路对于产生功能性和有效的神经系统是必要的。这允许建立基本的回路,这需要早期的有机体存活,以便以后进行后续的精炼。这些变化促进了对刺激的额外特异性,这可能导致行为复杂性增加。在多个物种中,Rohon-Beard神经元(RB)是最早指定的机械感觉神经元,对于建立基本的运动反应回路至关重要。随着背根神经节(DRG)神经元的发展并整合到运动电路中,来自RB的感觉输入逐渐变得多余。先前的研究表明,与DRG的发展同时,RB经历了巨大的细胞死亡浪潮。然而,与这些研究相反,我们表明,neurogenin1+(ngn1)RB在斑马鱼早期发育过程中不会经历广泛的程序性细胞死亡波,而是持续到受精后至少15天。从2dpf开始,我们还观察到ngn1+RB体的急剧中介化和收缩,以及rbs中ngn1的逐渐下调。这改变了早期斑马鱼神经发育的基本前提,为探索RB功能机制开辟了新的途径。持久性,和电路细化。
    During neural development, sculpting of early formed circuits by cell death and synaptic pruning is necessary to generate a functional and efficient nervous system. This allows for the establishment of rudimentary circuits which necessitate early organism survival to later undergo subsequent refinement. These changes facilitate additional specificity to stimuli which can lead to increased behavioral complexity. In multiple species, Rohon-Beard neurons (RBs) are the earliest mechanosensory neurons specified and are critical in establishing a rudimentary motor response circuit. Sensory input from RBs gradually becomes redundant as dorsal root ganglion (DRG) neurons develop and integrate into motor circuits. Previous studies demonstrate that RBs undergo a dramatic wave of cell death concurrent with development of the DRG. However, contrary to these studies, we show that neurogenin1+ (ngn1) RBs do not undergo a widespread wave of programmed cell death during early zebrafish development and instead persist until at least 15 days post fertilization (dpf). Starting at 2 dpf, we also observed a dramatic medialization and shrinkage of ngn1+ RB somas along with a gradual downregulation of ngn1 in RBs. This alters a fundamental premise of early zebrafish neural development and opens new avenues to explore mechanisms of RB function, persistence, and circuit refinement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号