neural development

神经发育
  • 文章类型: Journal Article
    生命早期发生的营养波动决定了代谢适应,这将影响生命后期对体重增加和肥胖的易感性。小鼠的出生后时期代表了下丘脑发育动态变化的时间,并且在哺乳期(MHFD)期间母体消耗高脂肪饮食会改变牛奶的组成并导致后代对肥胖的敏感性增强。下丘脑弓状核(ARH)中的Agouti相关肽(AgRP)神经元对多种代谢信号的变化作出反应,并将神经内分泌信息分配到其他大脑区域,例如下丘脑室旁核(PVH),众所周知,它可以整合各种调节体重的信号。从AgRP神经元到PVH的神经投射发生在哺乳期,这些投射在MHFD后代中减少,但潜在的发育机制在很大程度上仍然未知。小胶质细胞是中枢神经系统的固有免疫细胞,参与神经连接的改善和突触传递的调节。因为高脂肪饮食暴露会导致成人小胶质细胞激活,类似的激活可能发生在暴露于MHFD的后代中,并在雕刻下丘脑馈送电路中起作用。遗传靶向的轴突标记和免疫组织化学用于可视化源自MHFD大坝的出生后小鼠中的AgRP轴突和小胶质细胞,并量化形态变化。结果表明,MHFD后代PVH中小胶质细胞形态的局部变化表明监测活动增强,并且在时间上仅限于AgRP神经元支配PVH的时期。此外,轴突标记实验证实了MHFD后代中PVH的AgRP神经支配显着降低,并提供了对PVH的AgRP输入突触修剪的直接证据。使用集落刺激因子1受体抑制剂PLX5622的小胶质细胞耗竭确定,在MHFD后代中观察到的AgRP神经支配的减少取决于小胶质细胞,并且小胶质细胞是MHFD大坝后代断奶时最早出现的体重增加所必需的。然而,这些变化似乎并不依赖于小胶质细胞介导的突触修剪的程度。一起,这些发现表明,小胶质细胞通过暴露于MHFD而被激活,并在发育过程中直接与AgRP轴突相互作用,从而永久改变其密度,与代谢表型的发育编程有关。
    母体高脂肪饮食暴露导致人类和多种动物模型中负面健康结果的风险增加。在这里,我们证明了小胶质细胞是由孕妇高脂肪饮食暴露引起的体重变化和下丘脑回路扰动所必需的,这仅限于哺乳期。我们确定了小胶质细胞在空间和时间上有限的形态变化,这些变化反映了监视活动的增强,并与下丘脑回路形成的关键时期一致。我们还确定了小胶质细胞和发育中的轴突之间的直接细胞相互作用,以及突触吞噬的证据,虽然这种机制似乎不负责改变由母亲高脂肪饮食暴露引起的神经模式。这些发现共同确定了小胶质细胞在确定发育过程中对母体高脂肪饮食暴露的下丘脑神经支配模式中的重要作用。这可能有助于代谢表型的发育编程。
    Nutritional fluctuations that occur early in life dictate metabolic adaptations that will affect susceptibility to weight gain and obesity later in life. The postnatal period in mice represents a time of dynamic changes in hypothalamic development and maternal consumption of a high fat diet during the lactation period (MHFD) changes the composition of milk and leads to enhanced susceptibility to obesity in offspring. Agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus (ARH) react to changes in multiple metabolic signals and distribute neuroendocrine information to other brain regions, such as the paraventricular hypothalamic nucleus (PVH), which is known to integrate a variety of signals that regulate body weight. Development of neural projections from AgRP neurons to the PVH occurs during the lactation period and these projections are reduced in MHFD offspring, but underlying developmental mechanisms remain largely unknown. Microglia are the resident immune cells of the central nervous system and are involved in refinement of neural connections and modulation of synaptic transmission. Because high fat diet exposure causes activation of microglia in adults, a similar activation may occur in offspring exposed to MHFD and play a role in sculpting hypothalamic feeding circuitry. Genetically targeted axonal labeling and immunohistochemistry were used to visualize AgRP axons and microglia in postnatal mice derived from MHFD dams and morphological changes quantified. The results demonstrate regionally localized changes to microglial morphology in the PVH of MHFD offspring that suggest enhanced surveillance activity and are temporally restricted to the period when AgRP neurons innervate the PVH. In addition, axon labeling experiments confirm a significant decrease in AgRP innervation of the PVH in MHFD offspring and provide direct evidence of synaptic pruning of AgRP inputs to the PVH. Microglial depletion with the Colony-stimulating factor 1 receptor inhibitor PLX5622 determined that the decrease in AgRP innervation observed in MHFD offspring is dependent on microglia, and that microglia are required for weight gain that emerges as early as weaning in offspring of MHFD dams. However, these changes do not appear to be dependent on the degree of microglial mediated synaptic pruning. Together, these findings suggest that microglia are activated by exposure to MHFD and interact directly with AgRP axons during development to permanently alter their density, with implications for developmental programming of metabolic phenotype.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:越来越多的证据表明,相当比例的疾病相关突变发生在增强子中,基因调控所必需的非编码DNA区域。了解这种变化影响的监管计划的结构和机制可以阐明人类疾病的设备。
    结果:我们从神经分化的七个早期时间点收集表观遗传和基因表达数据集。围绕这个模型系统,我们构建了增强子-启动子相互作用的网络,每个都处于神经诱导的个体阶段。这些网络是一系列丰富分析的基础,通过它,我们证明了它们对各种疾病相关变异的时间动态和富集。我们将Girvan-Newman聚类算法应用于这些网络,以揭示生物学相关的调控子结构。此外,我们展示了使用转录因子过表达和大规模平行报告子试验验证预测的增强子-启动子相互作用的方法。
    结论:我们的研究结果为探索基因调控程序及其在发育过程中的动态提供了一个可推广的框架;这包括研究疾病相关变异对转录网络影响的综合方法。应用于我们网络的技术已经作为计算工具与我们的发现一起发布,E-P-INAnalyzer。我们的程序可以在不同的细胞环境和疾病中使用。
    BACKGROUND: Increasing evidence suggests that a substantial proportion of disease-associated mutations occur in enhancers, regions of non-coding DNA essential to gene regulation. Understanding the structures and mechanisms of the regulatory programs this variation affects can shed light on the apparatuses of human diseases.
    RESULTS: We collect epigenetic and gene expression datasets from seven early time points during neural differentiation. Focusing on this model system, we construct networks of enhancer-promoter interactions, each at an individual stage of neural induction. These networks serve as the base for a rich series of analyses, through which we demonstrate their temporal dynamics and enrichment for various disease-associated variants. We apply the Girvan-Newman clustering algorithm to these networks to reveal biologically relevant substructures of regulation. Additionally, we demonstrate methods to validate predicted enhancer-promoter interactions using transcription factor overexpression and massively parallel reporter assays.
    CONCLUSIONS: Our findings suggest a generalizable framework for exploring gene regulatory programs and their dynamics across developmental processes; this includes a comprehensive approach to studying the effects of disease-associated variation on transcriptional networks. The techniques applied to our networks have been published alongside our findings as a computational tool, E-P-INAnalyzer. Our procedure can be utilized across different cellular contexts and disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    特定大脑区域中的神经干/祖细胞(NSPC)在关键发育时期需要精确调节的代谢物产生。嘌呤——DNA的重要组成部分,RNA,和能量载体,如ATP和GTP-是大脑发育的关键代谢产物。嘌呤水平通过两种途径严格控制:从头合成和补救合成。驱动从头途径的酶被组装成一个大的多酶复合物,称为“嘌呤小体”。\"这里,我们综述了嘌呤代谢和嘌呤小体作为神经发育的时空调控因子。值得注意的是,出生后第0天(P0)左右,在小鼠皮层发育过程中,嘌呤合成从从头途径过渡到补救途径。抑制从头途径会影响mTORC1途径并导致特定的前脑畸形。在这次审查中,我们还探讨了新鉴定的NSPC蛋白-NACHT和含WD重复结构域1(Nwd1)-在嘌呤小体形成中蛋白质-蛋白质相互作用的重要性。Nwd1表达降低会破坏嘌呤体的形成,影响NSPC增殖和神经元迁移,导致脑室周围异位症.Nwd1直接与磷酸核糖基氨基咪唑-琥珀羧酰胺合成酶(PAICS)相互作用,参与从头嘌呤合成的酶。我们预计这篇综述将对研究神经发育的研究人员有价值,嘌呤代谢,和蛋白质-蛋白质相互作用。
    Neural stem/progenitor cells (NSPCs) in specific brain regions require precisely regulated metabolite production during critical development periods. Purines-vital components of DNA, RNA, and energy carriers like ATP and GTP-are crucial metabolites in brain development. Purine levels are tightly controlled through two pathways: de novo synthesis and salvage synthesis. Enzymes driving de novo pathway are assembled into a large multienzyme complex termed the \"purinosome.\" Here, we review purine metabolism and purinosomes as spatiotemporal regulators of neural development. Notably, around postnatal day 0 (P0) during mouse cortical development, purine synthesis transitions from the de novo pathway to the salvage pathway. Inhibiting the de novo pathway affects mTORC1 pathway and leads to specific forebrain malformations. In this review, we also explore the importance of protein-protein interactions of a newly identified NSPC protein-NACHT and WD repeat domain-containing 1 (Nwd1)-in purinosome formation. Reduced Nwd1 expression disrupts purinosome formation, impacting NSPC proliferation and neuronal migration, resulting in periventricular heterotopia. Nwd1 interacts directly with phosphoribosylaminoimidazole-succinocarboxamide synthetase (PAICS), an enzyme involved in de novo purine synthesis. We anticipate this review will be valuable for researchers investigating neural development, purine metabolism, and protein-protein interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在神经发育过程中,通过细胞死亡和突触修剪来雕刻早期形成的电路对于产生功能性和有效的神经系统是必要的。这允许建立基本的回路,这需要早期的有机体存活,以便以后进行后续的精炼。这些变化促进了对刺激的额外特异性,这可能导致行为复杂性增加。在多个物种中,Rohon-Beard神经元(RB)是最早指定的机械感觉神经元,对于建立基本的运动反应回路至关重要。随着背根神经节(DRG)神经元的发展并整合到运动电路中,来自RB的感觉输入逐渐变得多余。先前的研究表明,与DRG的发展同时,RB经历了巨大的细胞死亡浪潮。然而,与这些研究相反,我们表明,neurogenin1+(ngn1)RB在斑马鱼早期发育过程中不会经历广泛的程序性细胞死亡波,而是持续到受精后至少15天。从2dpf开始,我们还观察到ngn1+RB体的急剧中介化和收缩,以及rbs中ngn1的逐渐下调。这改变了早期斑马鱼神经发育的基本前提,为探索RB功能机制开辟了新的途径。持久性,和电路细化。
    During neural development, sculpting of early formed circuits by cell death and synaptic pruning is necessary to generate a functional and efficient nervous system. This allows for the establishment of rudimentary circuits which necessitate early organism survival to later undergo subsequent refinement. These changes facilitate additional specificity to stimuli which can lead to increased behavioral complexity. In multiple species, Rohon-Beard neurons (RBs) are the earliest mechanosensory neurons specified and are critical in establishing a rudimentary motor response circuit. Sensory input from RBs gradually becomes redundant as dorsal root ganglion (DRG) neurons develop and integrate into motor circuits. Previous studies demonstrate that RBs undergo a dramatic wave of cell death concurrent with development of the DRG. However, contrary to these studies, we show that neurogenin1+ (ngn1) RBs do not undergo a widespread wave of programmed cell death during early zebrafish development and instead persist until at least 15 days post fertilization (dpf). Starting at 2 dpf, we also observed a dramatic medialization and shrinkage of ngn1+ RB somas along with a gradual downregulation of ngn1 in RBs. This alters a fundamental premise of early zebrafish neural development and opens new avenues to explore mechanisms of RB function, persistence, and circuit refinement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胎盘是胎儿最大的器官,它将母亲与胎儿连接起来,并通过营养和气体的运输支持器官发生的大部分方面。然而,需要进一步的研究来评估胎盘病理作为新生儿长期体格发育或神经发育的可靠预测指标.阿姆斯特丹胎盘研讨会小组(APWGCS)关于胎盘病变的采样和定义的共识声明导致在描述胎盘最常见的病理病变方面的诊断一致性,并为胎盘病理学描述的国际标准化做出了贡献。在这篇叙述性评论中,我们根据APWGCS标准从以前发表的论文中重新分类胎盘病理描述,并比较评估了与婴儿身体和/或神经发育的关系.在重新分类和重新评估后,母体血管灌注不良的胎盘病理,APWGCS标准之一,作为婴儿神经发育阴性结果的普遍预测指标,不仅在足月和早产中,而且在极低出生体重新生儿的高危人群中也是如此。然而,很少有研究根据APWGCS的全部类别检查胎盘病理,并且还包括低危普通婴儿.在未来出生队列研究的设计以及高危婴儿的后续调查中,有必要使用APWGCS评估胎盘病理。
    The placenta is the largest fetal organ, which connects the mother to the fetus and supports most aspects of organogenesis through the transport of nutrients and gases. However, further studies are needed to assess placental pathology as a reliable predictor of long-term physical growth or neural development in newborns. The Consensus Statement of the Amsterdam Placental Workshop Group (APWGCS) on the sampling and definition of placental lesions has resulted in diagnostic uniformity in describing the most common pathological lesions of the placenta and contributed to the international standardization of descriptions of placental pathology. In this narrative review, we reclassified descriptions of placental pathology from previously published papers according to the APWGCS criteria and comparatively assessed the relationship with infantile physical and/or neural development. After reclassification and reevaluation, placental pathology of maternal vascular malperfusion, one of the APWGCS criteria, emerged as a promising candidate as a universal predictor of negative infantile neurodevelopmental outcomes, not only in term and preterm deliveries but also in high-risk groups of very low birthweight newborns. However, there are few studies that examined placental pathology according to the full categories of APWGCS and also included low-risk general infants. It is necessary to incorporate the assessment of placental pathology utilizing APWGCS in the design of future birth cohort studies as well as in follow-up investigations of high-risk infants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大脑构建空间组织的感官图以表示感官信息。传统上认为感觉图的形成取决于同步神经元活动。然而,来自嗅觉系统的最新证据表明,自发活动的细胞类型特定的时间模式在形成嗅觉肾小球图中起着指导作用。这些发现挑战了传统观点,并强调了研究神经活动的时空动力学以了解复杂神经回路发展的重要性。这篇综述讨论了新发现在嗅觉系统中的意义,并概述了未来的研究方向。
    The brain constructs spatially organized sensory maps to represent sensory information. The formation of sensory maps has traditionally been thought to depend on synchronous neuronal activity. However, recent evidence from the olfactory system suggests that cell type-specific temporal patterns of spontaneous activity play an instructive role in shaping the olfactory glomerular map. These findings challenge traditional views and highlight the importance of investigating the spatiotemporal dynamics of neural activity to understand the development of complex neural circuits. This review discusses the implications of new findings in the olfactory system and outlines future research directions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    哺乳动物脑中的静止成体神经干细胞(NSC)产生于发育期间增殖的NSC。除了获得静止,成人NSC标志,对这个过程知之甚少,里程碑,以及发育NSC向成年NSC状态过渡的潜在机制。这里,我们进行了靶向单细胞RNA-seq分析,以揭示出生后早期小鼠齿状回中NSC发育的分子级联。我们确定了两个连续的步骤,首先过渡到静止,然后进一步成熟,每个都涉及代谢基因表达的不同变化。直接代谢分析发现了不同的里程碑,包括NSC静止获取之前的自噬爆发和NSC成熟期间的细胞活性氧水平升高。功能上,自噬对于NSC在出生后早期发育过程中过渡到静止很重要。一起,我们的研究揭示了一个多步骤的过程,具有确定的里程碑,这些里程碑是在哺乳动物大脑中建立成年NSC池的基础。
    Quiescent adult neural stem cells (NSCs) in the mammalian brain arise from proliferating NSCs during development. Beyond acquisition of quiescence, an adult NSC hallmark, little is known about the process, milestones, and mechanisms underlying the transition of developmental NSCs to an adult NSC state. Here, we performed targeted single-cell RNA-seq analysis to reveal the molecular cascade underlying NSC development in the early postnatal mouse dentate gyrus. We identified two sequential steps, first a transition to quiescence followed by further maturation, each of which involved distinct changes in metabolic gene expression. Direct metabolic analysis uncovered distinct milestones, including an autophagy burst before NSC quiescence acquisition and cellular reactive oxygen species level elevation along NSC maturation. Functionally, autophagy is important for the NSC transition to quiescence during early postnatal development. Together, our study reveals a multi-step process with defined milestones underlying establishment of the adult NSC pool in the mammalian brain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    越来越多的证据表明,很大比例的疾病相关突变发生在增强子中,基因调控所必需的非编码DNA区域。了解这种变化影响的监管程序的结构和机制可以阐明人类疾病的设备。
    我们从神经分化过程中的七个早期时间点收集了表观遗传和基因表达数据集。围绕这个模型系统,我们构建了增强子-启动子相互作用的网络,每个都处于神经诱导的个体阶段。这些网络是一系列丰富分析的基础,通过它,我们证明了它们对各种疾病相关变异的时间动态和富集。我们将Girvan-Newman聚类算法应用于这些网络,以揭示生物学相关的调控子结构。此外,我们展示了使用转录因子过表达和大规模平行报告子试验验证预测的增强子-启动子相互作用的方法.
    我们的研究结果为探索基因调控程序及其在发育过程中的动态提供了一个可推广的框架。这包括研究疾病相关变异对转录网络影响的综合方法。应用于我们网络的技术已经作为计算工具与我们的发现一起发布,E-P-INAnalyzer。我们的程序可以在不同的细胞环境和疾病中使用。
    UNASSIGNED: Increasing evidence suggests that a substantial proportion of disease-associated mutations occur in enhancers, regions of non-coding DNA essential to gene regulation. Understanding the structures and mechanisms of regulatory programs this variation affects can shed light on the apparatuses of human diseases.
    UNASSIGNED: We collected epigenetic and gene expression datasets from seven early time points during neural differentiation. Focusing on this model system, we constructed networks of enhancer-promoter interactions, each at an individual stage of neural induction. These networks served as the base for a rich series of analyses, through which we demonstrated their temporal dynamics and enrichment for various disease-associated variants. We applied the Girvan-Newman clustering algorithm to these networks to reveal biologically relevant substructures of regulation. Additionally, we demonstrated methods to validate predicted enhancer-promoter interactions using transcription factor overexpression and massively parallel reporter assays.
    UNASSIGNED: Our findings suggest a generalizable framework for exploring gene regulatory programs and their dynamics across developmental processes. This includes a comprehensive approach to studying the effects of disease-associated variation on transcriptional networks. The techniques applied to our networks have been published alongside our findings as a computational tool, E-P-INAnalyzer. Our procedure can be utilized across different cellular contexts and disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    每个物种的大脑,身体和行为是由他们的进化历史的偶然性所塑造的;这些施加的压力改变了他们的发展轨迹。有,然而,另一套塑造我们和其他动物的偶然性:那些在一生中发生的偶然性。在这篇透视作品中,我们通过关注个人来展示这两个历史是如何交织在一起的。我们认为,有机体——他们的大脑和行为——不仅仅是基因和神经回路的发育产物,而是个体的行动中心随着时间的推移而展开。解开这个想法,我们首先强调变异的重要性和个体在生物学中的核心作用。然后,我们在比较物种发展时经常犯的“时间错误”。接下来,我们揭示了如何一个人的发展是一个过程,而不是一个产品,通过提供一组案例研究。这些显示了在“实际的现在”和“过去的存在”的背景下出现的发展轨迹。我们的考虑表明,个人是滑溜的——他们从来不是静止的;他们是一组持续的,创造性活动。鉴于此,如果我们渴望对物种内部和物种之间的神经回路和行为进行有意义的比较,那么认真对待个体发展似乎是至关重要的。
    Every species\' brain, body and behavior is shaped by the contingencies of their evolutionary history; these exert pressures that change their developmental trajectories. There is, however, another set of contingencies that shape us and other animals: those that occur during a lifetime. In this perspective piece, we show how these two histories are intertwined by focusing on the individual. We suggest that organisms--their brains and behaviors--are not solely the developmental products of genes and neural circuitry but individual centers of action unfolding in time. To unpack this idea, we first emphasize the importance of variation and the central role of the individual in biology. We then go over \"errors in time\" that we often make when comparing development across species. Next, we reveal how an individual\'s development is a process rather than a product by presenting a set of case studies. These show developmental trajectories as emerging in the contexts of the \"the actual now\" and \"the presence of the past\". Our consideration reveals that individuals are slippery-they are never static; they are a set of on-going, creative activities. In light of this, it seems that taking individual development seriously is essential if we aspire to make meaningful comparisons of neural circuits and behavior within and across species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    常量营养素的摄入可能是青少年认知和神经发育中最有影响力的因素之一。青春期是认知和神经发育的特定时期,在此期间的营养效果可能是终身的。因此,了解大量营养素摄入对青少年认知和神经发育的影响至关重要。因此,我们检查了大量营养素摄入量之间的关联,情报,和神经发育使用基于人群的队列数据。
    我们进行了两项研究。在研究1中,我们总共纳入了1,734名参与者(男孩,907,年龄[平均值±标准偏差]171.9±3.44个月;范围163.0-186.0个月)来自东京青少年队列(TTC),以检查大量营养素摄入量与智商(IQ)之间的关联。在研究2中,我们总共纳入了63名参与者(男孩,38,年龄174.4±7.7个月;范围160.7-191.6个月),使用图论分析从TTC子集衍生的静息状态功能磁共振成像(rs-fMRI)来研究营养摄入对神经发育的影响。
    TTC数据显示,蛋白质摄入量增加的男孩智商较高(β=0.068,p=0.031)。在女孩身上,碳水化合物摄入量减少(β=-0.076,p=0.024)。大约12岁时rs-fMRI的图论分析表明,左额下回的局部效率受损与碳水化合物和脂肪摄入量较高有关([x,y,z]=[-51,23,8],pFDR-分别校正=0.00018和0.02290),而左颞中回中间度中心性的增加与较高的碳水化合物有关,脂肪,和蛋白质摄入量([x,y,z]=[-61,-43,-13],pFDR校正分别=0.0027、0.0029和0.00075)。此外,我们发现,脂肪和蛋白质摄入对左颞中回2年测量间隔内介数中心性变化与智力之间的关系具有显著的调节作用(分别为β=12.41,p=0.0457;β=12.12,p=0.0401).
    我们的研究表明,在青少年早期,大量营养素的摄入与智力相关的神经发育之间存在关联。适当的营养摄入将是健康认知和神经发育的关键因素。
    UNASSIGNED: Macronutrient intake can be one of the most influential factors in cognitive and neural development in adolescents. Adolescence is a specific period of cognitive and neural development, and nutritional effects during this period could be life-long. Therefore, understanding the effects of macronutrient intake on cognitive and neural development in adolescents is crucially important. We thus examined the association across macronutrient intake, intelligence, and neural development using population-based cohort data.
    UNASSIGNED: We conducted two studies. In study 1, we included a total of 1,734 participants (boys, 907, age [mean ± standard deviation] 171.9 ± 3.44 months; range 163.0-186.0 months) from the Tokyo TEEN Cohort (TTC) to examine the association between macronutrient intake and intelligence quotient (IQ). In study 2, we included a total of 63 participants (boys, 38, age 174.4 ± 7.7 months; range 160.7-191.6 months) to investigate the effect of nutrition intake on neural development using graph theory analysis for resting-state functional magnetic resonance imaging (rs-fMRI) derived from a subset of the TTC.
    UNASSIGNED: TTC data revealed that a higher IQ was associated in boys with increased protein intake (β = 0.068, p = 0.031), and in girls, with reduced carbohydrate intake (β = -0.076, p = 0.024). Graph theory analysis for rs-fMRI at approximately age 12 has shown that impaired local efficiency in the left inferior frontal gyrus was associated with higher carbohydrate and fat intake ([x, y, z] = [-51, 23, 8], pFDR-corrected = 0.00018 and 0.02290, respectively), whereas increased betweenness centrality in the left middle temporal gyrus was associated with higher carbohydrate, fat, and protein intake ([x, y, z] = [-61, -43, -13], pFDR-corrected = 0.0027, 0.0029, and 0.00075, respectively). Moreover, we identified a significant moderating effect of fat and protein intake on the relationship between change in betweenness centrality over a 2-year measurement gap in the left middle temporal gyrus and intelligence (β = 12.41, p = 0.0457; β = 12.12, p = 0.0401, respectively).
    UNASSIGNED: Our study showed the association between macronutrient intake and neural development related to intelligence in early adolescents. Appropriate nutritional intake would be a key factor for healthy cognitive and neural development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号