human embryonic stem cells

人胚胎干细胞
  • 文章类型: Journal Article
    背景:咽内胚层(PE)是一种极其相关的发育组织,作为食道的祖先,甲状旁腺,甲状腺,肺,还有胸腺.虽然一些研究强调了PE细胞的重要性,这一重要发育阶段的详细转录和表观遗传特征仍然缺失,尤其是在人类中,由于其早期形成的技术和道德限制。
    结果:在这里,我们通过开发从人类胚胎干细胞(hESC)衍生PE样细胞的体外方案,并通过提供综合的多组学表征来填补这一知识空白。我们的PE样细胞强健地表达PE标志物,并且在转录上是同质的,并且与体内小鼠PE细胞相似。此外,我们通过结合ATAC-Seq和ChIP-Seq组蛋白修饰来定义它们的表观遗传景观和响应维甲酸的动态变化。多个高通量数据集的整合导致新的推定调控区的鉴定和以视黄酸为中心的转录因子网络的推断,从而协调PE样细胞的发育。
    结论:通过将hESCs分化与计算基因组学相结合,我们的工作揭示了人类PE分化过程中发生的表观遗传动力学,为专注于PE衍生物的开发及其在遗传综合征中的发育缺陷建模的研究提供了坚实的资源和基础。
    BACKGROUND: The Pharyngeal Endoderm (PE) is an extremely relevant developmental tissue, serving as the progenitor for the esophagus, parathyroids, thyroids, lungs, and thymus. While several studies have highlighted the importance of PE cells, a detailed transcriptional and epigenetic characterization of this important developmental stage is still missing, especially in humans, due to technical and ethical constraints pertaining to its early formation.
    RESULTS: Here we fill this knowledge gap by developing an in vitro protocol for the derivation of PE-like cells from human Embryonic Stem Cells (hESCs) and by providing an integrated multi-omics characterization. Our PE-like cells robustly express PE markers and are transcriptionally homogenous and similar to in vivo mouse PE cells. In addition, we define their epigenetic landscape and dynamic changes in response to Retinoic Acid by combining ATAC-Seq and ChIP-Seq of histone modifications. The integration of multiple high-throughput datasets leads to the identification of new putative regulatory regions and to the inference of a Retinoic Acid-centered transcription factor network orchestrating the development of PE-like cells.
    CONCLUSIONS: By combining hESCs differentiation with computational genomics, our work reveals the epigenetic dynamics that occur during human PE differentiation, providing a solid resource and foundation for research focused on the development of PE derivatives and the modeling of their developmental defects in genetic syndromes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从基因操纵的多能干细胞中衍生低免疫原性人细胞对于未来的移植医学和过继性免疫疗法具有巨大的希望。破坏多能干细胞中的β-2-微球蛋白(B2M),然后分化为专门的细胞类型是一种有希望的方法来获得低免疫原性细胞。鉴于基于CRISPR/Cas9的基因编辑工具和杆状病毒递送系统的有吸引力的特征,杆状病毒可以提供CRISPR/Cas9组件用于B2M的位点特异性基因编辑。在这里,我们报道了一种杆状病毒CRISPR/Cas9载体系统的开发,用于人细胞中B2M基因座的破坏。在人类胚胎干细胞(hESCs)中进行测试时,成功实现了B2M基因敲除/敲除,导致人白细胞抗原I类在细胞表面表达的稳定下调。然后将源自B2M基因破坏的hESC的成纤维细胞用作与人外周血单核细胞共培养的刺激细胞。如通过敏感的Elispot测定所评估的,这些成纤维细胞触发的同种免疫应答显著降低。B2M阴性hESC在体外和体内保持多能性和分化成三个胚芽谱系的能力。这些发现证明了使用杆状病毒-CRISPR/Cas9系统建立B2M破坏的多能干细胞的可行性。B2M敲低/敲除足以导致低免疫原性条件,从而支持B2M阴性细胞作为同种异体细胞治疗的通用供体细胞的潜在用途。
    Derivation of hypoimmunogenic human cells from genetically manipulated pluripotent stem cells holds great promise for future transplantation medicine and adoptive immunotherapy. Disruption of beta-2-microglobulin (B2M) in pluripotent stem cells followed by differentiation into specialized cell types is a promising approach to derive hypoimmunogenic cells. Given the attractive features of CRISPR/Cas9-based gene editing tool and baculoviral delivery system, baculovirus can deliver CRISPR/Cas9 components for site-specific gene editing of B2M. Herein, we report the development of a baculoviral CRISPR/Cas9 vector system for the B2M locus disruption in human cells. When tested in human embryonic stem cells (hESCs), the B2M gene knockdown/out was successfully achieved, leading to the stable down-regulation of human leukocyte antigen class I expression on the cell surface. Fibroblasts derived from the B2M gene-disrupted hESCs were then used as stimulator cells in the co-cultures with human peripheral blood mononuclear cells. These fibroblasts triggered significantly reduced alloimmune responses as assessed by sensitive Elispot assays. The B2M-negative hESCs maintained the pluripotency and the ability to differentiate into three germ lineages in vitro and in vivo. These findings demonstrated the feasibility of using the baculoviral-CRISPR/Cas9 system to establish B2M-disrupted pluripotent stem cells. B2M knockdown/out sufficiently leads to hypoimmunogenic conditions, thereby supporting the potential use of B2M-negative cells as universal donor cells for allogeneic cell therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: News
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    OSGEP基因编码O-唾液酸糖蛋白内肽酶,高度保守的KEOPS复合物的催化单元(激酶,内肽酶,和其他小尺寸蛋白质),可调节N-6-苏酰基氨基甲酰基腺苷(t6A)形成中的第二个生物合成步骤。KEOPS突变导致Galloway-Mowat综合征(GAMOS),其在哺乳动物中的细胞功能和潜在的分子机制尚不清楚。在这项研究中,我们利用慢病毒介导的OSGEP敲低产生OSGEP缺陷型人胚胎干细胞(hESCs).OSGEP敲低hESC表现出干性因子表达降低和G2/M期阻滞,表明OSGEP在调节hESC命运中的潜在作用。此外,OSGEP沉默导致蛋白质合成增强和蛋白质聚集增加,这进一步诱导了不适当的自噬,如P62的表达改变和LC3-I向LC3-II的转化所证明的。上述发现揭示了OSGEP在调节hESCs多能性和分化中的潜在参与,同时强调了其在维持蛋白质平衡和自噬中的关键作用。这可能对人类疾病有影响。
    The OSGEP gene encodes O-sialoglycoprotein endopeptidase, a catalytic unit of the highly conserved KEOPS complex (Kinase, Endopeptidase, and Other Proteins of small Size) that regulates the second biosynthetic step in the formation of N-6-threonylcarbamoyladenosine (t6A). Mutations in KEOPS cause Galloway-Mowat syndrome (GAMOS), whose cellular function in mammals and underlying molecular mechanisms are not well understood. In this study, we utilized lentivirus-mediated OSGEP knockdown to generate OSGEP-deficient human embryonic stem cells (hESCs). OSGEP-knockdown hESCs exhibited reduced stemness factor expression and G2/M phase arrest, indicating a potential role of OSGEP in the regulation of hESC fate. Additionally, OSGEP silencing led to enhanced protein synthesis and increased aggregation of proteins, which further induced inappropriate autophagy, as evidenced by the altered expression of P62 and the conversion of LC3-I to LC3-II. The above findings shed light on the potential involvement of OSGEP in regulating pluripotency and differentiation in hESCs while simultaneously highlighting its crucial role in maintaining proteostasis and autophagy, which may have implications for human disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    选择性5-羟色胺再摄取抑制剂(SSRIs),包括西酞普兰,是怀孕期间广泛使用的抗抑郁药。然而,产前暴露于西酞普兰对神经发育的影响仍然知之甚少。我们旨在使用多组学方法研究西酞普兰暴露对人胚胎干细胞早期神经元分化的影响。西酞普兰对参与神经发育过程或与抑郁症相关的基因表达和DNA甲基化的时间和剂量依赖性影响,比如BDNF,GDF11、CCL2、STC1、DDIT4和GAD2。单细胞RNA测序分析揭示了不同的干细胞簇,神经元祖细胞和成神经细胞,暴露于西酞普兰会微妙地影响祖先亚型。假颞叶分析显示神经元分化增强。我们的发现表明,早期神经元分化过程中的西酞普兰暴露会影响与神经发育和抑郁症相关的基因表达模式。提供对其潜在神经发育影响的见解,并强调进一步研究以了解产前SSRI暴露的长期后果的重要性。
    Selective serotonin reuptake inhibitors (SSRIs), including citalopram, are widely used antidepressants during pregnancy. However, the effects of prenatal exposure to citalopram on neurodevelopment remain poorly understood. We aimed to investigate the impact of citalopram exposure on early neuronal differentiation of human embryonic stem cells using a multi-omics approach. Citalopram induced time- and dose-dependent effects on gene expression and DNA methylation of genes involved in neurodevelopmental processes or linked to depression, such as BDNF, GDF11, CCL2, STC1, DDIT4 and GAD2. Single-cell RNA-sequencing analysis revealed distinct clusters of stem cells, neuronal progenitors and neuroblasts, where exposure to citalopram subtly influenced progenitor subtypes. Pseudotemporal analysis showed enhanced neuronal differentiation. Our findings suggest that citalopram exposure during early neuronal differentiation influences gene expression patterns associated with neurodevelopment and depression, providing insights into its potential neurodevelopmental impact and highlighting the importance of further research to understand the long-term consequences of prenatal SSRI exposure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:本研究旨在研究声振动对人胚胎干细胞(hESCs)多能性的影响,并评估治疗后细胞的增殖和自我更新能力。
    方法:实验使用人ES细胞系H1。用声振动装置处理hESC。随后使用集落形成测定法检测它们的增殖能力,而通过免疫荧光染色检测到多能性相关标志物的表达。最后,在适当的引物存在下,使用定量聚合酶链反应(qPCR)检测基因表达水平的变化.
    结果:与对照组的正常细胞相比,受声振动作用的实验细胞形态无明显变化。相反,实验细胞的集落形成效率显着提高。免疫荧光染色结果显示实验组细胞多能性标志物NANOG阳性,八聚体结合转录因子4基因(OCT4),和SRY(性别决定区Y)-框2(SOX2)。此外,多能性基因NANOG的表达水平,OCT4,SOX2和Yes相关蛋白(YAP)相关基因在声振动后上调。
    结论:我们的结果表明,声振动增强了hESCs的增殖能力,并增加了NANOG的表达水平,OCT4、SOX2和YAP相关基因,表明声振动可以优化hESCs的自我更新能力,YAP信号通路可能在声振动的功能过程中起关键作用。
    OBJECTIVE: This study aimed to investigate the effect of acoustic vibration on the pluripotency of human embryonic stem cells (hESCs) and evaluate cell proliferation and self-renewal ability post-treatment.
    METHODS: The human ES cell line H1 was used for the experiments. hESCs were treated with an acoustic vibration device. Their proliferative ability was subsequently detected using a colony formation assay, while the expression of pluripotency-related markers was detected via immunofluorescence staining. Finally, changes in gene expression levels were examined using quantitative polymerase chain reaction (qPCR) in the presence of appropriate primers.
    RESULTS: Compared with normal cells in the control group, the morphology of experimental cells subjected to acoustic vibration did not significantly change. Contrastingly, the colony-forming efficiency of the experimental cells significantly increased. Immunofluorescence staining results showed the cells in experimental group were positive for the pluripotency markers NANOG, octamer-binding transcription factor 4 gene (OCT4), and SRY (sex determining region Y)-box 2 (SOX2). In addition, the expression levels of pluripotency genes NANOG, OCT4, SOX2, and Yes-associated protein (YAP)-related genes were up-regulated following acoustic vibration.
    CONCLUSIONS: Our results revealed that acoustic vibration enhanced the proliferative ability of hESCs and increased the expression levels of NANOG, OCT4, SOX2, and YAP-related genes, indicating that acoustic vibration can optimize the self-renewal ability of hESCs and that the YAP signaling pathway may play a critical role in the functional process of acoustic vibration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    KCNQ1基因编码心脏动作电位所需的电压门控钾通道。该基因的突变与遗传性长QT综合征1,Jervell和Lange-Nielsen综合征有关,家族性心房颤动.NM_000218.3(KCNQ1):c.604+2T>C突变已被归类为导致LQT1的致病变体。在这项研究中,我们基于CRISPR碱基编辑系统产生了KCNQ1(c.644+2T>C)突变人胚胎干细胞系WAe009-A-1L.WAe009-A-1L细胞具有分化心肌细胞的潜能,可作为体外疾病模型进行机制探索和药物筛选。
    The KCNQ1 gene encodes a voltage-gated potassium channel required for cardiac action potentials. Mutations in this gene have been associated with hereditary long QT syndrome 1, Jervell and Lange-Nielsen syndromes, and familial atrial fibrillation. The NM_000218.3(KCNQ1): c.604 + 2T > C mutation has been categorized as the causative variant leading to LQT1. In this study, we generated a KCNQ1 (c.644 + 2T > C) mutation human embryonic stem cell line WAe009-A-1L based on CRISPR base editing system. WAe009-A-1L cell has the potential to differentiate cardiomyocytes and would be used as an in vitro disease model for mechanism exploration and drug screening.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    超级增强子(SE)是基因组DNA的扩展区域,可调节与细胞身份和细胞命运有关的基因的表达。我们最近在鼠Vsx2SE中确定了发育阶段和细胞类型特异性模块。这里,我们表明,在报告基因测定中,人VSX2SE模块具有相似的发育阶段和细胞类型特异性活性。通过将一个VSX2SE模块的人类序列插入患有小眼症的小鼠中,眼睛大小获救。为了了解这些SE模块在人类视网膜发育过程中的功能,我们删除了人类胚胎干细胞中的单个模块,并生成了视网膜类器官.删除一个模块会导致小的类器官,概述小眼症小鼠的小眼表型,而另一个模块的删除导致双极神经元发育中断。这种典型的SE用作理解具有复杂表达模式的神经源性转录因子的发育阶段和细胞类型特异性效应的模型。此外,通过阐明基因调控机制,我们可以开始研究这些机制的失调是如何导致表型多样性和疾病的。
    Super-enhancers (SEs) are expansive regions of genomic DNA that regulate the expression of genes involved in cell identity and cell fate. We recently identified developmental stage- and cell type-specific modules within the murine Vsx2 SE. Here, we show that the human VSX2 SE modules have similar developmental stage- and cell type-specific activity in reporter gene assays. By inserting the human sequence of one VSX2 SE module into a mouse with microphthalmia, eye size was rescued. To understand the function of these SE modules during human retinal development, we deleted individual modules in human embryonic stem cells and generated retinal organoids. Deleting one module results in small organoids, recapitulating the small-eyed phenotype of mice with microphthalmia, while deletion of the other module led to disruptions in bipolar neuron development. This prototypical SE serves as a model for understanding developmental stage- and cell type-specific effects of neurogenic transcription factors with complex expression patterns. Moreover, by elucidating the gene regulatory mechanisms, we can begin to examine how dysregulation of these mechanisms contributes to phenotypic diversity and disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    YAP在控制各种细胞系的生长和分化中起着至关重要的作用。尽管YAP在小鼠睾丸和生精细胞中的表达表明其在哺乳动物精子发生中的作用,YAP在人类男性生殖细胞发育中的作用尚未确定。使用体外模型和基因编辑方法,我们从人胚胎干细胞(hESCs)产生了人精原细胞干细胞样细胞(hSSLCs),并研究了YAP在人精子发生中的作用.结果表明,在生精分化早期降低YAP表达会增加PLZFhSSLCs和单倍体精子细胞的数量。我们还证明,在生精分化的后期,YAP的上调对于维持生精细胞的存活至关重要。偏离该模式的YAP的表达导致较低数量的hSSLCs和较高水平的生精细胞死亡。一起来看,我们的结果表明,YAP的动态表达模式对人类精子发生至关重要。在人类精子发生过程中调节YAP的水平可以提高源自hESCs的雄性生殖细胞的产量,为体外配子的发生提供了优化方法,深入了解其在男性不育治疗中的应用。
    YAP plays a vital role in controlling growth and differentiation in various cell lineages. Although the expression of YAP in mice testicular and spermatogenic cells suggests its role in mammalian spermatogenesis, the role of YAP in the development of human male germ cells has not yet been determined. Using an in vitro model and a gene editing approach, we generated human spermatogonia stem cell-like cells (hSSLCs) from human embryonic stem cells (hESCs) and investigated the role of YAP in human spermatogenesis. The results showed that reducing YAP expression during the early stage of spermatogenic differentiation increased the number of PLZF+ hSSLCs and haploid spermatid-like cells. We also demonstrated that the up-regulation of YAP is essential for maintaining spermatogenic cell survival during the later stages of spermatogenic differentiation. The expression of YAP that deviates from this pattern results in a lower number of hSSLCs and an increased level of spermatogenic cell death. Taken together, our result demonstrates that the dynamic expression pattern of YAP is essential for human spermatogenesis. Modulating the level of YAP during human spermatogenesis could improve the production yield of male germ cells derived from hESCs, which could provide the optimization method for in vitro gametogenesis and gain insight into the application in the treatment of male infertility.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    发育需要CTCF组织的三维基因组结构。临床鉴定的CTCF突变与不良发育结果有关。然而,潜在的机制仍然难以捉摸。在这次调查中,我们探讨了临床相关的R567W点突变的调节作用,位于CTCF的第11个锌指内,通过将这种突变引入小鼠模型和人类胚胎干细胞来源的皮质类器官模型。具有纯合CTCFR567W突变的小鼠表现出生长障碍,导致产后死亡率,和大脑的偏差,心,和病理和单细胞转录组水平的肺发育。这种突变诱导过早的干细胞样细胞衰竭,加速GABA能神经元的成熟,破坏神经发育和突触通路.此外,它特别阻碍CTCF与核心共识位点上游的外周基序结合,导致局部染色质结构和基因表达的改变,特别是在成簇的protcadherin位点。使用人类皮质类器官的比较分析反映了这种突变引起的后果。总之,这项研究阐明了CTCFR567W突变对人类神经发育障碍的影响,为潜在的治疗干预铺平道路。
    The three-dimensional genome structure organized by CTCF is required for development. Clinically identified mutations in CTCF have been linked to adverse developmental outcomes. Nevertheless, the underlying mechanism remains elusive. In this investigation, we explore the regulatory roles of a clinically relevant R567W point mutation, located within the 11th zinc finger of CTCF, by introducing this mutation into both murine models and human embryonic stem cell-derived cortical organoid models. Mice with homozygous CTCFR567W mutation exhibit growth impediments, resulting in postnatal mortality, and deviations in brain, heart, and lung development at the pathological and single-cell transcriptome levels. This mutation induces premature stem-like cell exhaustion, accelerates the maturation of GABAergic neurons, and disrupts neurodevelopmental and synaptic pathways. Additionally, it specifically hinders CTCF binding to peripheral motifs upstream to the core consensus site, causing alterations in local chromatin structure and gene expression, particularly at the clustered protocadherin locus. Comparative analysis using human cortical organoids mirrors the consequences induced by this mutation. In summary, this study elucidates the influence of the CTCFR567W mutation on human neurodevelopmental disorders, paving the way for potential therapeutic interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号