human embryonic stem cells

人胚胎干细胞
  • 文章类型: Journal Article
    从基因操纵的多能干细胞中衍生低免疫原性人细胞对于未来的移植医学和过继性免疫疗法具有巨大的希望。破坏多能干细胞中的β-2-微球蛋白(B2M),然后分化为专门的细胞类型是一种有希望的方法来获得低免疫原性细胞。鉴于基于CRISPR/Cas9的基因编辑工具和杆状病毒递送系统的有吸引力的特征,杆状病毒可以提供CRISPR/Cas9组件用于B2M的位点特异性基因编辑。在这里,我们报道了一种杆状病毒CRISPR/Cas9载体系统的开发,用于人细胞中B2M基因座的破坏。在人类胚胎干细胞(hESCs)中进行测试时,成功实现了B2M基因敲除/敲除,导致人白细胞抗原I类在细胞表面表达的稳定下调。然后将源自B2M基因破坏的hESC的成纤维细胞用作与人外周血单核细胞共培养的刺激细胞。如通过敏感的Elispot测定所评估的,这些成纤维细胞触发的同种免疫应答显著降低。B2M阴性hESC在体外和体内保持多能性和分化成三个胚芽谱系的能力。这些发现证明了使用杆状病毒-CRISPR/Cas9系统建立B2M破坏的多能干细胞的可行性。B2M敲低/敲除足以导致低免疫原性条件,从而支持B2M阴性细胞作为同种异体细胞治疗的通用供体细胞的潜在用途。
    Derivation of hypoimmunogenic human cells from genetically manipulated pluripotent stem cells holds great promise for future transplantation medicine and adoptive immunotherapy. Disruption of beta-2-microglobulin (B2M) in pluripotent stem cells followed by differentiation into specialized cell types is a promising approach to derive hypoimmunogenic cells. Given the attractive features of CRISPR/Cas9-based gene editing tool and baculoviral delivery system, baculovirus can deliver CRISPR/Cas9 components for site-specific gene editing of B2M. Herein, we report the development of a baculoviral CRISPR/Cas9 vector system for the B2M locus disruption in human cells. When tested in human embryonic stem cells (hESCs), the B2M gene knockdown/out was successfully achieved, leading to the stable down-regulation of human leukocyte antigen class I expression on the cell surface. Fibroblasts derived from the B2M gene-disrupted hESCs were then used as stimulator cells in the co-cultures with human peripheral blood mononuclear cells. These fibroblasts triggered significantly reduced alloimmune responses as assessed by sensitive Elispot assays. The B2M-negative hESCs maintained the pluripotency and the ability to differentiate into three germ lineages in vitro and in vivo. These findings demonstrated the feasibility of using the baculoviral-CRISPR/Cas9 system to establish B2M-disrupted pluripotent stem cells. B2M knockdown/out sufficiently leads to hypoimmunogenic conditions, thereby supporting the potential use of B2M-negative cells as universal donor cells for allogeneic cell therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    OSGEP基因编码O-唾液酸糖蛋白内肽酶,高度保守的KEOPS复合物的催化单元(激酶,内肽酶,和其他小尺寸蛋白质),可调节N-6-苏酰基氨基甲酰基腺苷(t6A)形成中的第二个生物合成步骤。KEOPS突变导致Galloway-Mowat综合征(GAMOS),其在哺乳动物中的细胞功能和潜在的分子机制尚不清楚。在这项研究中,我们利用慢病毒介导的OSGEP敲低产生OSGEP缺陷型人胚胎干细胞(hESCs).OSGEP敲低hESC表现出干性因子表达降低和G2/M期阻滞,表明OSGEP在调节hESC命运中的潜在作用。此外,OSGEP沉默导致蛋白质合成增强和蛋白质聚集增加,这进一步诱导了不适当的自噬,如P62的表达改变和LC3-I向LC3-II的转化所证明的。上述发现揭示了OSGEP在调节hESCs多能性和分化中的潜在参与,同时强调了其在维持蛋白质平衡和自噬中的关键作用。这可能对人类疾病有影响。
    The OSGEP gene encodes O-sialoglycoprotein endopeptidase, a catalytic unit of the highly conserved KEOPS complex (Kinase, Endopeptidase, and Other Proteins of small Size) that regulates the second biosynthetic step in the formation of N-6-threonylcarbamoyladenosine (t6A). Mutations in KEOPS cause Galloway-Mowat syndrome (GAMOS), whose cellular function in mammals and underlying molecular mechanisms are not well understood. In this study, we utilized lentivirus-mediated OSGEP knockdown to generate OSGEP-deficient human embryonic stem cells (hESCs). OSGEP-knockdown hESCs exhibited reduced stemness factor expression and G2/M phase arrest, indicating a potential role of OSGEP in the regulation of hESC fate. Additionally, OSGEP silencing led to enhanced protein synthesis and increased aggregation of proteins, which further induced inappropriate autophagy, as evidenced by the altered expression of P62 and the conversion of LC3-I to LC3-II. The above findings shed light on the potential involvement of OSGEP in regulating pluripotency and differentiation in hESCs while simultaneously highlighting its crucial role in maintaining proteostasis and autophagy, which may have implications for human disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:本研究旨在研究声振动对人胚胎干细胞(hESCs)多能性的影响,并评估治疗后细胞的增殖和自我更新能力。
    方法:实验使用人ES细胞系H1。用声振动装置处理hESC。随后使用集落形成测定法检测它们的增殖能力,而通过免疫荧光染色检测到多能性相关标志物的表达。最后,在适当的引物存在下,使用定量聚合酶链反应(qPCR)检测基因表达水平的变化.
    结果:与对照组的正常细胞相比,受声振动作用的实验细胞形态无明显变化。相反,实验细胞的集落形成效率显着提高。免疫荧光染色结果显示实验组细胞多能性标志物NANOG阳性,八聚体结合转录因子4基因(OCT4),和SRY(性别决定区Y)-框2(SOX2)。此外,多能性基因NANOG的表达水平,OCT4,SOX2和Yes相关蛋白(YAP)相关基因在声振动后上调。
    结论:我们的结果表明,声振动增强了hESCs的增殖能力,并增加了NANOG的表达水平,OCT4、SOX2和YAP相关基因,表明声振动可以优化hESCs的自我更新能力,YAP信号通路可能在声振动的功能过程中起关键作用。
    OBJECTIVE: This study aimed to investigate the effect of acoustic vibration on the pluripotency of human embryonic stem cells (hESCs) and evaluate cell proliferation and self-renewal ability post-treatment.
    METHODS: The human ES cell line H1 was used for the experiments. hESCs were treated with an acoustic vibration device. Their proliferative ability was subsequently detected using a colony formation assay, while the expression of pluripotency-related markers was detected via immunofluorescence staining. Finally, changes in gene expression levels were examined using quantitative polymerase chain reaction (qPCR) in the presence of appropriate primers.
    RESULTS: Compared with normal cells in the control group, the morphology of experimental cells subjected to acoustic vibration did not significantly change. Contrastingly, the colony-forming efficiency of the experimental cells significantly increased. Immunofluorescence staining results showed the cells in experimental group were positive for the pluripotency markers NANOG, octamer-binding transcription factor 4 gene (OCT4), and SRY (sex determining region Y)-box 2 (SOX2). In addition, the expression levels of pluripotency genes NANOG, OCT4, SOX2, and Yes-associated protein (YAP)-related genes were up-regulated following acoustic vibration.
    CONCLUSIONS: Our results revealed that acoustic vibration enhanced the proliferative ability of hESCs and increased the expression levels of NANOG, OCT4, SOX2, and YAP-related genes, indicating that acoustic vibration can optimize the self-renewal ability of hESCs and that the YAP signaling pathway may play a critical role in the functional process of acoustic vibration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    KCNQ1基因编码心脏动作电位所需的电压门控钾通道。该基因的突变与遗传性长QT综合征1,Jervell和Lange-Nielsen综合征有关,家族性心房颤动.NM_000218.3(KCNQ1):c.604+2T>C突变已被归类为导致LQT1的致病变体。在这项研究中,我们基于CRISPR碱基编辑系统产生了KCNQ1(c.644+2T>C)突变人胚胎干细胞系WAe009-A-1L.WAe009-A-1L细胞具有分化心肌细胞的潜能,可作为体外疾病模型进行机制探索和药物筛选。
    The KCNQ1 gene encodes a voltage-gated potassium channel required for cardiac action potentials. Mutations in this gene have been associated with hereditary long QT syndrome 1, Jervell and Lange-Nielsen syndromes, and familial atrial fibrillation. The NM_000218.3(KCNQ1): c.604 + 2T > C mutation has been categorized as the causative variant leading to LQT1. In this study, we generated a KCNQ1 (c.644 + 2T > C) mutation human embryonic stem cell line WAe009-A-1L based on CRISPR base editing system. WAe009-A-1L cell has the potential to differentiate cardiomyocytes and would be used as an in vitro disease model for mechanism exploration and drug screening.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    发育需要CTCF组织的三维基因组结构。临床鉴定的CTCF突变与不良发育结果有关。然而,潜在的机制仍然难以捉摸。在这次调查中,我们探讨了临床相关的R567W点突变的调节作用,位于CTCF的第11个锌指内,通过将这种突变引入小鼠模型和人类胚胎干细胞来源的皮质类器官模型。具有纯合CTCFR567W突变的小鼠表现出生长障碍,导致产后死亡率,和大脑的偏差,心,和病理和单细胞转录组水平的肺发育。这种突变诱导过早的干细胞样细胞衰竭,加速GABA能神经元的成熟,破坏神经发育和突触通路.此外,它特别阻碍CTCF与核心共识位点上游的外周基序结合,导致局部染色质结构和基因表达的改变,特别是在成簇的protcadherin位点。使用人类皮质类器官的比较分析反映了这种突变引起的后果。总之,这项研究阐明了CTCFR567W突变对人类神经发育障碍的影响,为潜在的治疗干预铺平道路。
    The three-dimensional genome structure organized by CTCF is required for development. Clinically identified mutations in CTCF have been linked to adverse developmental outcomes. Nevertheless, the underlying mechanism remains elusive. In this investigation, we explore the regulatory roles of a clinically relevant R567W point mutation, located within the 11th zinc finger of CTCF, by introducing this mutation into both murine models and human embryonic stem cell-derived cortical organoid models. Mice with homozygous CTCFR567W mutation exhibit growth impediments, resulting in postnatal mortality, and deviations in brain, heart, and lung development at the pathological and single-cell transcriptome levels. This mutation induces premature stem-like cell exhaustion, accelerates the maturation of GABAergic neurons, and disrupts neurodevelopmental and synaptic pathways. Additionally, it specifically hinders CTCF binding to peripheral motifs upstream to the core consensus site, causing alterations in local chromatin structure and gene expression, particularly at the clustered protocadherin locus. Comparative analysis using human cortical organoids mirrors the consequences induced by this mutation. In summary, this study elucidates the influence of the CTCFR567W mutation on human neurodevelopmental disorders, paving the way for potential therapeutic interventions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    了解人类胚胎干细胞(hESCs)多能性的调节对于推进发育生物学和再生医学领域至关重要。尽管最近取得了进展,调节hESC多能性的分子事件,尤其是在幼稚状态和初始状态之间的过渡,仍然不清楚。在这里,我们显示,与引发的hESC相比,幼稚hESC显示更低水平的O-连接的N-乙酰葡糖胺(O-GlcNAcylation)。O-GlcNAcase(OGA),催化从蛋白质中去除O-GlcNAc的关键酶,在幼稚hESC中高度表达,对幼稚多能性很重要。OGA的耗尽加速了从幼稚到引发的多能性转变。OGA由EP300转录调节,并且充当对于维持幼稚多能性重要的基因的转录调节物。此外,我们通过定量蛋白质组学分析了两种多能性状态的蛋白质O-GlcNAcylation。一起,这项研究确定OGA是hESCs幼稚多能性的重要因素,并表明O-GlcNAcylation对hESCs稳态具有广泛影响。
    Understanding the regulation of human embryonic stem cells (hESCs) pluripotency is critical to advance the field of developmental biology and regenerative medicine. Despite the recent progress, molecular events regulating hESC pluripotency, especially the transition between naive and primed states, still remain unclear. Here we show that naive hESCs display lower levels of O-linked N-acetylglucosamine (O-GlcNAcylation) than primed hESCs. O-GlcNAcase (OGA), the key enzyme catalyzing the removal of O-GlcNAc from proteins, is highly expressed in naive hESCs and is important for naive pluripotency. Depletion of OGA accelerates naive-to-primed pluripotency transition. OGA is transcriptionally regulated by EP300 and acts as a transcription regulator of genes important for maintaining naive pluripotency. Moreover, we profile protein O-GlcNAcylation of the two pluripotency states by quantitative proteomics. Together, this study identifies OGA as an important factor of naive pluripotency in hESCs and suggests that O-GlcNAcylation has a broad effect on hESCs homeostasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    以前的回顾性队列研究发现,与子宫和输卵管中的氧气张力(2%-8%)相比,着床前胚胎在辅助生殖技术(ART)期间暴露于大气氧分压(AtmO2,20%)会影响胚胎质量,妊娠结局和后代健康。然而,目前关于AtmO2对胚胎和后代发育的影响和机制的研究主要局限于动物实验。人胚胎干细胞(hESCs)在人类早期胚胎发育研究中发挥着特殊而不可替代的作用。在这项研究中,我们使用hESCs作为模型来阐明AtmO2暴露对人胚胎发育的可能影响和机制.我们发现暴露于AtmO2可以降低细胞活力,产生氧化应激,增加DNA损伤,启动DNA修复,激活自噬,增加细胞凋亡。我们还注意到大约50%的hESC存活,通过自我更新和多能性调节因子的高表达适应和增殖,并影响胚状体的分化。这些数据表明hESCs经历氧化应激,DNA损伤的积累,并在AtmO2的选择压力下激活DNA损伤反应。一些hESC经历细胞死亡,而其他hESC通过增加自我更新基因的表达来适应和增殖。目前的发现提供了体外证据,表明在植入前早期阶段暴露于AtmO2会对hESC产生负面影响。
    Previous retrospective cohort studies have found that, compared with oxygen tension in the uterus and fallopian tubes (2 %-8 %), exposure of pre-implantation embryos to atmospheric oxygen tension (AtmO2, 20 %) during assisted reproductive technology(ART) can affect embryo quality, pregnancy outcomes and offspring health. However, current research on the effects and mechanisms of AtmO2 on the development of embryos and offspring is mainly limited to animal experiments. Human embryonic stem cells (hESCs) play a special and irreplaceable role in the study of early human embryonic development. In this study, we used hESCs as a model to elucidate the possible effects and mechanisms of AtmO2 exposure on human embryonic development. We found that exposure to AtmO2 can reduce cell viability, produce oxidative stress, increase DNA damage, initiate DNA repair, activate autophagy, and increase cell apoptosis. We also noticed that approximately 50 % of hESCs survived, adapted and proliferated through high expression of self-renewal and pluripotency regulatory factors, and affected embryoid body differentiation. These data indicate that hESCs experience oxidative stress, accumulation of DNA damage, and activate DNA damage response under the selective pressure of AtmO2.Some hESCs undergo cell death, whereas other hESCs adapt and proliferate through increased expression of self-renewal genes. The current findings provide in vitro evidence that exposure to AtmO2 during the early preimplantation stage negatively affects hESCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:端粒由染色体末端的重复DNA序列组成,以保护染色体稳定性,并且主要通过端粒酶或偶尔通过基于重组的机制通过端粒的替代端粒延长(ALT)来维持。可能调节端粒维持的其他机制仍有待探索。同时测量同一人胚胎干细胞(hESC)中的端粒长度和转录组,表明UBQLN1的mRNA表达水平与端粒长度呈线性关系。
    方法:在本研究中,我们首先产生了UBQLN1缺陷型hESCs,并通过RNA-seq和蛋白质组学与野生型(WT)hESCs比较了端粒长度和RNA和蛋白质水平的分子变化.然后,我们使用免疫沉淀-质谱(IP-MS)鉴定了与UBQLN1的潜在相互作用蛋白。此外,分析了UBQLN1缺陷型hESCs端粒缩短的潜在机制.
    结果:我们表明Ubiquilin1(UBQLN1)通过促进线粒体功能对人胚胎干细胞(hESCs)的端粒维持至关重要。UBQLN1缺乏导致氧化应激,失去了蛋白质,线粒体功能障碍,DNA损伤,和端粒磨耗。通过在低氧条件下培养或补充N-乙酰半胱氨酸来减少氧化损伤并促进线粒体功能,部分减轻了UBQLN1缺乏症诱导的端粒磨耗。此外,UBQLN1缺乏/端粒缩短下调神经外胚层谱系分化的基因。
    结论:总而言之,UBQLN1功能清除泛素化蛋白,防止线粒体过载和线粒体自噬升高。UBQLN1通过调节蛋白抑制维持线粒体和端粒,并在神经外胚层分化中起关键作用。
    BACKGROUND: Telomeres consist of repetitive DNA sequences at the chromosome ends to protect chromosomal stability, and primarily maintained by telomerase or occasionally by alternative telomere lengthening of telomeres (ALT) through recombination-based mechanisms. Additional mechanisms that may regulate telomere maintenance remain to be explored. Simultaneous measurement of telomere length and transcriptome in the same human embryonic stem cell (hESC) revealed that mRNA expression levels of UBQLN1 exhibit linear relationship with telomere length.
    METHODS: In this study, we first generated UBQLN1-deficient hESCs and compared with the wild-type (WT) hESCs the telomere length and molecular change at RNA and protein level by RNA-seq and proteomics. Then we identified the potential interacting proteins with UBQLN1 using immunoprecipitation-mass spectrometry (IP-MS). Furthermore, the potential mechanisms underlying the shortened telomeres in UBQLN1-deficient hESCs were analyzed.
    RESULTS: We show that Ubiquilin1 (UBQLN1) is critical for telomere maintenance in human embryonic stem cells (hESCs) via promoting mitochondrial function. UBQLN1 deficiency leads to oxidative stress, loss of proteostasis, mitochondria dysfunction, DNA damage, and telomere attrition. Reducing oxidative damage and promoting mitochondria function by culture under hypoxia condition or supplementation with N-acetylcysteine partly attenuate the telomere attrition induced by UBQLN1 deficiency. Moreover, UBQLN1 deficiency/telomere shortening downregulates genes for neuro-ectoderm lineage differentiation.
    CONCLUSIONS: Altogether, UBQLN1 functions to scavenge ubiquitinated proteins, preventing their overloading mitochondria and elevated mitophagy. UBQLN1 maintains mitochondria and telomeres by regulating proteostasis and plays critical role in neuro-ectoderm differentiation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    叉头盒蛋白J1(FOXJ1),叉头家族的一员,是调节多纤毛细胞分化和活动纤毛程序的重要转录因子。这里,我们通过使用CRISPR/Cas9系统插入FOXJ1的P2A-EGFP基因盒,建立了FOXJ1-EGFP敲入人胚胎干细胞(hESC)系。报告细胞系保留了正常的核型,表达可比较的多能标记基因,并保持差异化潜力。该报告细胞系能够在一般肺分化过程中对多纤毛细胞进行活鉴定,并且将是研究多纤毛细胞分化的有价值的工具。纤毛发生及相关肺部疾病的机制。
    Forkhead box protein J1 (FOXJ1), a member of the forkhead family, is an important transcription factor regulating multiciliated cell differentiation and motile ciliogenic program. Here, we established a FOXJ1- EGFP knock-in human embryonic stem cell (hESC) line by inserting a P2A-EGFP gene cassette of FOXJ1 using CRISPR/Cas9 system. The reporter cell line retained a normal karyotype, expressed comparable pluripotent marker genes, and maintained differentiation potential. This reporter cell line enables live identification of multiciliated cells during the general lung differentiation and will be a valuable tool for studying the multiciliated cell differentiation, ciliogenesis and mechanism of related pulmonary diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    优化定形内胚层(DE)分化的效率对于产生不同的器官样结构是必要的。在这项研究中,我们使用小分子抑制剂saracatinib(SAR)增强人胚胎干细胞的DE分化和诱导多能干细胞。SAR在低浓度下显着提高了DE分化效率。通过RNA-seq和分子对接模拟探讨了SAR与粘着斑激酶(FAK)的相互作用,这进一步支持在SAR处理的细胞中通过p-FAK过表达抑制DE分化。此外,我们发现SAR抑制Yes相关蛋白(YAP)的核易位,FAK的下游效应器,这促进了DE分化。此外,SAR的添加使得活化素A(AA)从50ng/mL显著降低至10ng/mL,而不损害DE分化效率。为了诱导胰腺谱系,在DE分化阶段,10ng/mlAA与SAR结合产生的PDX1/NKX6.1胰腺祖细胞数量与通过50ng/mlAA处理获得的细胞数量相当。我们的研究强调了SAR作为一种潜在的调节剂,可以促进DE细胞的成本效益产生,并提供了对细胞命运决定的编排的见解。
    Optimizing the efficiency of definitive endoderm (DE) differentiation is necessary for the generation of diverse organ-like structures. In this study, we used the small molecule inhibitor saracatinib (SAR) to enhance DE differentiation of human embryonic stem cells and induced pluripotent stem cells. SAR significantly improved DE differentiation efficiency at low concentrations. The interaction between SAR and Focal Adhesion Kinase (FAK) was explored through RNA-seq and molecular docking simulations, which further supported the inhibition of DE differentiation by p-FAK overexpression in SAR-treated cells. In addition, we found that SAR inhibited the nuclear translocation of Yes-associated protein (YAP), a downstream effector of FAK, which promoted DE differentiation. Moreover, the addition of SAR enabled a significant reduction in activin A (AA) from 50 to 10 ng/mL without compromising DE differentiation efficiency. For induction of the pancreatic lineage, 10 ng/ml AA combined with SAR at the DE differentiation stage yielded a comparative number of PDX1+/NKX6.1+ pancreatic progenitor cells to those obtained by 50 ng/ml AA treatment. Our study highlights SAR as a potential modulator that facilitates the cost-effective generation of DE cells and provides insight into the orchestration of cell fate determination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号