Sulfonium Compounds

  • 文章类型: Journal Article
    读者的身份识别,一类重要的识别特定位点修饰残基的蛋白质,对于揭示翻译后修饰的生物学作用至关重要。光反应性交联剂是研究读者的有力工具。然而,现有方法通常采用具有综合挑战性的光反应弹头,以及它们在辐照时产生的高能中间体,如氮烯和卡宾,可能导致实质性的非特异性交联。在这里,我们将二甲基锍报告为甲基赖氨酸模拟物,该模拟物与特定的读取器结合,随后在紫外线照射下通过单电子转移与结合袋内的保守色氨酸交联。交联依赖于锍和吲哚之间的蛋白质模板σ-π电子供体-受体相互作用,确保色氨酸在活性位点的优异位点选择性和与其他甲基赖氨酸读取器的正交性。这种方法可以提高从复杂细胞样品中发现甲基赖氨酸读取器的程度。此外,这种光交联策略可以扩展到开发其他类型的微环境依赖性缀合位点特异性色氨酸.
    The identification of readers, an important class of proteins that recognize modified residues at specific sites, is essential to uncover the biological roles of post-translational modifications. Photoreactive crosslinkers are powerful tools for investigating readers. However, existing methods usually employ synthetically challenging photoreactive warheads, and their high-energy intermediates generated upon irradiation, such as nitrene and carbene, may cause substantial non-specific crosslinking. Here we report dimethylsulfonium as a methyllysine mimic that binds to specific readers and subsequently crosslinks to a conserved tryptophan inside the binding pocket through single-electron transfer under ultraviolet irradiation. The crosslinking relies on a protein-templated σ-π electron donor-acceptor interaction between sulfonium and indole, ensuring excellent site selectivity for tryptophan in the active site and orthogonality to other methyllysine readers. This method could escalate the discovery of methyllysine readers from complex cell samples. Furthermore, this photo crosslinking strategy could be extended to develop other types of microenvironment-dependent conjugations to site-specific tryptophan.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    二甲基磺丙酸酯(DMSP)是海洋环境中普遍存在的有机硫分子,在胁迫耐受性中具有重要作用。全球碳和硫循环,和趋化性。它是气候活性气体二甲基硫醚(DMS)的主要前体,这是从海洋转移到大气的生物硫的最大天然来源。Alteromonassp.M12,一种革兰氏阴性和需氧细菌,是从马里亚纳海沟2500米深处收集的海水样本中分离出来的。我们报告了菌株M12的完整基因组序列及其基因组特征,以导入和利用DMSP。菌株M12的基因组包含一条环状染色体(5,012,782bp),GC含量为40.88%。Alteromonassp.M12可以在DMSP作为唯一碳源的情况下生长,并以DMSP为前体生产DMS。基因组分析表明,菌株M12包含一组参与DMSP裂解下游步骤的基因,但没有已知的基因编码DMSP转运蛋白或DMSP裂解酶。结果表明,该菌株在其基因组中包含新的DMSP转运和切割基因,值得进一步研究。将DMSP导入细胞可能是菌株M12适应马里亚纳海沟静水压力环境的策略,因为DMSP可以用作静水压力保护剂。本研究揭示了深海细菌对DMSP的分解代谢。
    Dimethylsulfoniopropionate (DMSP) is a ubiquitous organosulfur molecule in marine environments with important roles in stress tolerance, global carbon and sulfur cycling, and chemotaxis. It is the main precursor of the climate active gas dimethyl sulfide (DMS), which is the greatest natural source of bio‑sulfur transferred from ocean to atmosphere. Alteromonas sp. M12, a Gram-negative and aerobic bacterium, was isolated from the seawater samples collected from the Mariana Trench at the depth of 2500 m. Here, we report the complete genome sequence of strain M12 and its genomic characteristics to import and utilize DMSP. The genome of strain M12 contains one circular chromosome (5,012,782 bp) with the GC content of 40.88%. Alteromonas sp. M12 can grow with DMSP as a sole carbon source, and produced DMS with DMSP as a precursor. Genomic analysis showed that strain M12 contained a set of genes involved in the downstream steps of DMSP cleavage, but no known genes encoding DMSP transporters or DMSP lyases. The results indicated that this strain contained novel DMSP transport and cleavage genes in its genome which warrants further investigation. The import of DMSP into cells may be a strategy of strain M12 to adapt the hydrostatic pressure environment in the Mariana Trench, as DMSP can be used as a hydrostatic pressure protectant. This study sheds light on the catabolism of DMSP by deep-sea bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    海洋浮游捕食者-猎物的相互作用发生在微尺度的海景中,扩散的化学物质可以作为增强或阻止捕食的趋化线索,或者作为补充猎物摄取的基本资源。浮游植物渗透物二甲基磺丙酸酯(DMSP)及其降解产物二甲基硫醚(DMS)和丙烯酸酯是普遍存在的具有高趋化潜力的化合物,但是,关于它们是否充当放牧增强剂或威慑剂的争议由来已久。这里,我们研究了三种草食性鞭毛藻对点源的趋化反应,溶解的DMSP的微观梯度,DMS,和丙烯酸酯。我们没有发现丙烯酸酯是趋化性驱避剂的证据,并且观察到DMS的吸引子作用较弱。DMSP表现为一种强大的化学引诱物,其通过影响游泳方式和聚集而促进放牧的潜力取决于放牧者的摄食方式和掺入DMSP的能力。我们的研究表明,除非捕食模型纳入趋化性驱动的搜索和猎物的发现,否则捕食模型将无法预测放牧的影响。
    Marine planktonic predator-prey interactions occur in microscale seascapes, where diffusing chemicals may act either as chemotactic cues that enhance or arrest predation, or as elemental resources that are complementary to prey ingestion. The phytoplankton osmolyte dimethylsulfoniopropionate (DMSP) and its degradation products dimethylsulfide (DMS) and acrylate are pervasive compounds with high chemotactic potential, but there is a longstanding controversy over whether they act as grazing enhancers or deterrents. Here, we investigated the chemotactic responses of three herbivorous dinoflagellates to point-sourced, microscale gradients of dissolved DMSP, DMS, and acrylate. We found no evidence for acrylate being a chemotactic repellent and observed a weak attractor role of DMS. DMSP behaved as a strong chemoattractor whose potential for grazing facilitation through effects on swimming patterns and aggregation depends on the grazer\'s feeding mode and ability to incorporate DMSP. Our study reveals that predation models will fail to predict grazing impacts unless they incorporate chemotaxis-driven searching and finding of prey.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    用烷基和(杂)芳基亚砜叶立德实现了吡啶氧基定向的Ir(III)催化的受保护酪氨酸的二酰基甲基化,以高产率提供基于酪氨酸的非天然氨基酸。此外,该策略的后期示例在含酪氨酸的二肽中成功完成,三肽和四肽产量适中。这种方法的特点是它的网站选择性,敏感官能团的耐受性,可扩展性,和保留酪氨酸基序的手性构型。
    Pyridyloxy-directed Ir(III)-catalyzed diacylmethylation of protected tyrosines was achieved with alkyl and (hetero)aryl sulfoxonium ylides, furnishing tyrosine-based unnatural amino acids in good yields. Furthermore, the late stage exemplification of the strategy was successfully accomplished in tyrosine-containing dipeptides, tripeptides and tetrapeptides in moderate yields. This methodology is distinguished by its site-selectivity, tolerance of sensitive functional groups, scalability, and retention of the chiral configuration for tyrosine motifs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在各种mRNA载体系统中,脂质纳米颗粒(LNPs)是临床上最先进的。虽然目前mRNA/LNP疗法的临床试验主要针对肝脏疾病,mRNA治疗的潜力远远超出了──尚未被揭示。为了完全解开mRNA治疗的希望,迫切需要开发能够靶向肝外器官的安全有效的LNP系统。这里,我们报道了用于全身mRNA递送到肺的锍脂质纳米颗粒(sLNP)的开发。在小鼠中静脉内施用后,sLNP有效且特异性地将mRNA递送至肺。sLNP在主要器官中没有诱导肺部和全身性炎症或毒性的证据。我们的发现表明,新开发的肺特异性sLNP平台既安全又有效。它为推进新的基于mRNA的治疗肺部相关疾病和病症的疗法的开发提供了巨大的希望。
    Among various mRNA carrier systems, lipid nanoparticles (LNPs) stand out as the most clinically advanced. While current clinical trials of mRNA/LNP therapeutics mainly address liver diseases, the potential of mRNA therapy extends far beyond─yet to be unraveled. To fully unlock the promises of mRNA therapy, there is an urgent need to develop safe and effective LNP systems that can target extrahepatic organs. Here, we report on the development of sulfonium lipid nanoparticles (sLNPs) for systemic mRNA delivery to the lungs. sLNP effectively and specifically delivered mRNA to the lungs following intravenous administration in mice. No evidence of lung and systemic inflammation or toxicity in major organs was induced by sLNP. Our findings demonstrated that the newly developed lung-specific sLNP platform is both safe and efficacious. It holds great promise for advancing the development of new mRNA-based therapies for the treatment of lung-associated diseases and conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    二甲基磺丙酸酯(DMSP)是一种丰富的海洋有机硫化合物,具有保护压力的作用,趋化性,养分和硫循环和气候调节。在这里,我们报告了一种双功能DMSP生物合成酶的发现,DsyGD,在根瘤菌synshinyii和一些以前不知道会产生DMSP的丝状蓝细菌的转氨途径中。DsyGD通过其N末端DsyG甲基硫代羟丁酸酯S-甲基转移酶和C末端DsyD二甲基磺羟丁酸酯脱羧酶结构域产生DMSP。系统发育上不同的DsyG样蛋白,叫做DSYE,在各种环境丰富的藻类中发现了具有甲基硫代羟基丁酸酯S-甲基转移酶活性,包括低的混合,高和以前未知的DMSP生产商。含有DSYE的藻类,特别是成华的pelagophyceae物种,与先前描述的DMSP合成基因相比,在全球范围内是更丰富的DMSP生产者。这项工作大大增加了预测的DMSP产生生物的数量和多样性,并强调了Pelagophyceae和其他含DSYE的藻类在全球DMSP生产和硫循环中的重要性。
    Dimethylsulfoniopropionate (DMSP) is an abundant marine organosulfur compound with roles in stress protection, chemotaxis, nutrient and sulfur cycling and climate regulation. Here we report the discovery of a bifunctional DMSP biosynthesis enzyme, DsyGD, in the transamination pathway of the rhizobacterium Gynuella sunshinyii and some filamentous cyanobacteria not previously known to produce DMSP. DsyGD produces DMSP through its N-terminal DsyG methylthiohydroxybutyrate S-methyltransferase and C-terminal DsyD dimethylsulfoniohydroxybutyrate decarboxylase domains. Phylogenetically distinct DsyG-like proteins, termed DSYE, with methylthiohydroxybutyrate S-methyltransferase activity were found in diverse and environmentally abundant algae, comprising a mix of low, high and previously unknown DMSP producers. Algae containing DSYE, particularly bloom-forming Pelagophyceae species, were globally more abundant DMSP producers than those with previously described DMSP synthesis genes. This work greatly increases the number and diversity of predicted DMSP-producing organisms and highlights the importance of Pelagophyceae and other DSYE-containing algae in global DMSP production and sulfur cycling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:阿尔茨海默病(AD),最常见的神经退行性疾病,影响了广泛的老龄化人口。AD的特征是病理性淀粉样β(Aβ)斑块和神经原纤维缠结,导致神经退化和认知能力下降。缺乏有效的AD治疗方法凸显了对新型治疗剂的迫切需求。特别是在早期阶段。二甲基磺丙酸酯(DMSP)是一种具有抗氧化和神经保护特性的天然海洋化合物。然而,关于DMSP治疗AD的疗效及其相关机制的研究有限。
    目的:本研究旨在使用临床前3×Tg-AD小鼠模型探索DMSP作为AD治疗的治疗效果和作用机制。
    方法:研究涉及对四个月大的3×Tg-AD小鼠连续三个月给予DMSP(饮用水中7μg/mL和11μg/mL)。Y迷宫测试,新颖的物体识别测试,采用Morris水迷宫测验评价记忆和学习能力。Aβ和tau病理相关蛋白的相对表达水平和分布,突触,和神经胶质细胞使用蛋白质印迹和免疫荧光分析。此外,蛋白质组学和生物信息学方法用于探索DMSP治疗的潜在靶标。
    结果:DMSP治疗的AD小鼠表现出显著增强的认知功能,提示DMSP减轻AD患者的记忆和学习障碍。此外,DMSP减少了皮质和海马中Aβ和磷酸化tau的异常积累,这是AD病理学的关键标志。除了它的神经保护特性,DMSP恢复突触密度以及突触和神经元蛋白的表达,这对正常的大脑功能至关重要。DMSP显示抗炎特性,其抑制炎性星形胶质细胞和维持小胶质细胞稳态的能力证明了这一点。值得注意的是,DMSP促进少突胶质细胞祖细胞(OPCs)的成熟,大脑髓鞘形成结构发展的关键过程。蛋白质组学分析显示,DMSP积极影响对少突胶质细胞发育至关重要的生物过程,髓鞘形成,和轴突鞘,在AD患者中经常受损。蛋白质验证和脑组织染色支持DMSP在保持髓鞘富集和鞘完整性中的作用。这些治疗效果很大程度上归因于髓鞘相关糖蛋白(Mag)和四跨膜蛋白Cd9的表达增强。
    结论:总体而言,我们的发现强调DMSP是一种有前途的新型AD治疗候选药物,在认知和记忆增强方面提供多方面的好处,减少Aβ和tau病理,神经元突触保护,抗炎作用,与其他研究相比,髓鞘修复是一个创新的目标。除了是一个潜在的有效治疗AD,DMSP还可能具有解决与髓磷脂损伤密切相关的其他神经退行性疾病的潜力。
    BACKGROUND: Alzheimer\'s disease (AD), the most common neurodegenerative disorder, affects a broad spectrum of aging populations. AD is characterized by pathological amyloid-β (Aβ) plaques and neurofibrillary tangles, leading to neural degeneration and cognitive decline. The lack of effective treatments for AD highlights the urgent need for novel therapeutic agents, particularly in the early stages. Dimethylsulfoniopropionate (DMSP) is a natural marine compound with antioxidant and neuroprotective properties. However, studies on the efficacy of DMSP in the treatment of AD and its associated mechanisms are limited.
    OBJECTIVE: This study aimed to explore the therapeutic effects and mechanisms of action of DMSP as an AD treatment using a preclinical 3 × Tg-AD mouse model.
    METHODS: The research involved administering DMSP (7 μg/mL and 11 μg/mL in drinking water) to four-month-old 3 × Tg-AD mice consecutively for three months. The Y-maze test, novel object recognition test, and Morris water maze test were used to assess memory and learning ability. The relative expression levels and distribution of proteins relevant to Aβ and tau pathology, synapses, and glial cells were analyzed using western blotting and immunofluorescence assays. Additionally, proteomic and bioinformatics approaches were used to explore the potential targets of DMSP treatment.
    RESULTS: DMSP-treated AD mice showed significantly enhanced cognitive function, suggesting that DMSP mitigates memory and learning impairments in AD. Moreover, DMSP diminished the abnormal accumulation of Aβ and phosphorylated tau in both the cortex and hippocampus, which are crucial hallmarks of AD pathology. In addition to its neuroprotective properties, DMSP restored synaptic density and the expression of synaptic and neuronal proteins, which are essential for proper brain function. DMSP displayed anti-inflammatory properties, as evidenced by its ability to suppress inflammatory astrocytes and maintain microglial homeostasis. Notably, DMSP facilitated the maturation of oligodendrocytes (OLs) from oligodendrocyte progenitor cells (OPCs), a critical process in the development of the brain myelination architecture. Proteomic analysis revealed that DMSP positively influenced biological processes crucial for oligodendrocyte development, myelination, and axonal ensheathment, which are often compromised in patients with AD. Protein validation and brain tissue staining supported the role of DMSP in preserving myelin enrichment and sheath integrity. These therapeutic effects were largely attributed to the enhanced expression of myelin-associated glycoprotein (Mag) and tetraspanin Cd9.
    CONCLUSIONS: Overall, our findings highlight DMSP as a promising novel therapeutic candidate for AD, offering multifaceted benefits in cognitive and memory enhancement, reduction of Aβ and tau pathology, neuronal synapse protection, anti-inflammatory effects, and myelin sheath restoration as an innovative target compared to other studies. In addition to being a potentially effective treatment for AD, DMSP may also have the potential to address other neurodegenerative diseases that are closely associated with myelin impairment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    二甲基磺丙酸(DMSP)是地球上最丰富的含硫有机化合物之一,是重要的碳和硫源,在全球硫循环中起着重要作用。海洋微生物是参与DMSP代谢的重要群体。菌株Cobetiasp.D5是在藻华期间从青岛黄海地区的海水样品中分离出来的。关于Cobetia细菌的DMSP利用能力的知识仍然有限。该研究报告了Cobetiasp的全基因组序列。D5明白其DMSP代谢通路。Cobetiasp.的基因组。D5由长度为4,233,985bp的环状染色体组成,GC含量为62.56%。基因组分析表明,Cobetiasp。D5包含一组转运和代谢DMSP的基因,其可以切割DMSP以产生二甲基硫化物(DMS)和3-羟基丙酰基-辅酶A(3-HP-CoA)。DMS扩散到环境中进入全球硫循环,而3-HP-CoA被分解代谢为乙酰辅酶A进入中心碳代谢。因此,这项研究为Cobetiasp.的DMSP代谢过程提供了遗传见解。D5在海洋藻华期间,并有助于理解海洋细菌在全球硫循环中的重要作用。
    Dimethylsulfoniopropionate (DMSP) is one of the most abundant sulfur-containing organic compounds on the earth, which is an important carbon and sulfur source and plays an important role in the global sulfur cycle. Marine microorganisms are an important group involved in DMSP metabolism. The strain Cobetia sp. D5 was isolated from seawater samples in the Yellow Sea area of Qingdao during an algal bloom. There is still limited knowledge on the capacity of DMSP utilization of Cobetia bacteria. The study reports the whole genome sequence of Cobetia sp. D5 to understand its DMSP metabolism pathway. The genome of Cobetia sp. D5 consists of a circular chromosome with a length of 4,233,985 bp and the GC content is 62.56%. Genomic analysis showed that Cobetia sp. D5 contains a set of genes to transport and metabolize DMSP, which can cleave DMSP to produce dimethyl sulphide (DMS) and 3-Hydroxypropionyl-Coenzyme A (3-HP-CoA). DMS diffuses into the environment to enter the global sulfur cycle, whereas 3-HP-CoA is catabolized to acetyl CoA to enter central carbon metabolism. Thus, this study provides genetic insights into the DMSP metabolic processes of Cobetia sp. D5 during a marine algal bloom, and contributes to the understanding of the important role played by marine bacteria in the global sulfur cycle.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    二甲基磺丙酸酯(DMSP),海洋和海底沉积物中的一种关键有机硫化合物,被浮游植物和细菌降解,导致气候活性挥发性气体二甲基硫醚(DMS)的释放。然而,目前尚不清楚海底沉积物中的优势真核真菌是否具有DMSP降解和DMS形成的特定能力和代谢机制。我们的研究提供了第一个证据,即海底以下约2公里的含煤沉积物中的真菌,如曲霉属。,球形毛壳,sphaerospermum枝孢霉,和青霉,可以降解DMSP并产生DMS。在sydowii曲霉29R-4-F02中,表现出最高的DMSP依赖性DMS生产率(16.95pmol/μg蛋白/min),两个DMSP裂解酶基因,dddP和ddW,已确定。值得注意的是,dddW基因,以前只在细菌中观察到,发现对真菌DMSP裂解至关重要。这些发现不仅扩展了能够降解DMSP的真菌名单,而且还增强了我们对海底沉积生态系统中DMSP裂解酶多样性以及真菌在DMSP分解中的作用的理解。
    Dimethylsulfoniopropionate (DMSP), a key organic sulfur compound in marine and subseafloor sediments, is degraded by phytoplankton and bacteria, resulting in the release of the climate-active volatile gas dimethylsulfide (DMS). However, it remains unclear if dominant eukaryotic fungi in subseafloor sediments possess specific abilities and metabolic mechanisms for DMSP degradation and DMS formation. Our study provides the first evidence that fungi from coal-bearing sediments ∼2 km below the seafloor, such as Aspergillus spp., Chaetomium globosum, Cladosporium sphaerospermum, and Penicillium funiculosum, can degrade DMSP and produce DMS. In Aspergillus sydowii 29R-4-F02, which exhibited the highest DMSP-dependent DMS production rate (16.95 pmol/μg protein/min), two DMSP lyase genes, dddP and dddW, were identified. Remarkably, the dddW gene, previously observed only in bacteria, was found to be crucial for fungal DMSP cleavage. These findings not only extend the list of fungi capable of degrading DMSP, but also enhance our understanding of DMSP lyase diversity and the role of fungi in DMSP decomposition in subseafloor sedimentary ecosystems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号