Plant Diseases

植物病害
  • 文章类型: Journal Article
    生物防治是增强病原体和病虫害防治以确保经济作物生产高生产率的有前途的方法。因此,PGPR生物肥料非常适合在茶树(茶树)和烟草的种植中应用,但是到目前为止很少有报道。在这项研究中,将三个PGPR菌株的财团的生产应用于烟草和茶树。结果表明,用PGPR处理的植物对细菌病原体丁香假单胞菌(PstDC3000)的抗性增强。在提高植物抵抗病原体入侵的能力的显著效果是通过氧活性的测量验证,细菌菌落计数,和抗性相关基因(NPR1、PR1、JAV1、POD等)的表达水平。).此外,PGPR在茶园中的应用表明,茶绿叶菊(EmpoascaonukiMatsuda)的种群数量显着减少,茶蓟马(Thysanoptera:Thripidae),阿雷龙canthusspiniferus(Quaintanca)和减轻茶苗中的炭疽病。因此,PGPR生物肥料可作为一种可行的生物防治方法,以提高烟草和茶树的产量和质量。我们的发现揭示了PGPR帮助提高植物生物胁迫抗性的部分机制,更好地应用于农业生产。
    Biological control is a promising approach to enhance pathogen and pest control to ensure high productivity in cash crop production. Therefore, PGPR biofertilizers are very suitable for application in the cultivation of tea plants (Camellia sinensis) and tobacco, but it is rarely reported so far. In this study, production of a consortium of three strains of PGPR were applied to tobacco and tea plants. The results demonstrated that plants treated with PGPR exhibited enhanced resistance against the bacterial pathogen Pseudomonas syringae (PstDC3000). The significant effect in improving the plant\'s ability to resist pathogen invasion was verified through measurements of oxygen activity, bacterial colony counts, and expression levels of resistance-related genes (NPR1, PR1, JAZ1, POD etc.). Moreover, the application of PGPR in the tea plantation showed significantly reduced population occurrences of tea green leafhoppers (Empoasca onukii Matsuda), tea thrips (Thysanoptera:Thripidae), Aleurocanthus spiniferus (Quaintanca) and alleviated anthracnose disease in tea seedlings. Therefore, PGPR biofertilizers may serve as a viable biological control method to improve tobacco and tea plant yield and quality. Our findings revealed part of the mechanism by which PGPR helped improve plant biostresses resistance, enabling better application in agricultural production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    炭疽菌是农业和林业中最常见的病原体之一,迫切需要他们的控制。
    在这项研究中,从红叶石榴根际土壤中分离鉴定出68株生防菌。
    分离株通过16SrRNA鉴定为短短杆菌。通过体外拮抗实验证实了TR-4对炭疽菌的抑制作用。在10μl/ml细菌溶液的浓度下,TR-4的抑制作用为98%,对植物的保护和对C.siamense的抑制是明显的。此外,培养三天的TR-4发酵液中纤维素酶和壳聚糖酶的分泌量分别为9.07mol/L和2.15μl/mol,分别。扫描电子显微镜和透射电子显微镜证实TR-4破坏了C.siamense的细胞壁,导致细胞内容物泄漏,从而削弱细菌的致病性。
    UNASSIGNED: Colletotrichum species are among the most common pathogens in agriculture and forestry, and their control is urgently needed.
    UNASSIGNED: In this study, a total of 68 strains of biocontrol bacteria were isolated and identified from Photinia × fraseri rhizosphere soil.
    UNASSIGNED: The isolates were identified as Brevibacillus brevis by 16S rRNA. The inhibitory effect of TR-4 on Colletotrichum was confirmed by an in vitro antagonistic experiment. The inhibitory effect of TR-4 was 98% at a concentration of 10 µl/ml bacterial solution, protection of the plant and inhibition of C. siamense was evident. Moreover, the secretion of cellulase and chitosan enzymes in the TR-4 fermentation liquid cultured for three days was 9.07 mol/L and 2.15 µl/mol, respectively. Scanning electron microscopy and transmission electron microscopy confirmed that TR-4 destroyed the cell wall of C. siamense, resulting in leakage of the cell contents, thus weakening the pathogenicity of the bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在奥里萨邦的东部沿海地区,由尖孢镰刀菌引起的枯萎病。辣椒是辣椒中极具破坏性的疾病。这种疾病很难用化学杀真菌剂控制,因为它本质上是土壤传播的。辣椒植物的天然根际土壤用于分离和测试细菌拮抗剂的有效性和促进植物生长的能力。在从健康辣椒植物根际分离的55个分离物中,五个分离株,即Iso01,Iso17,Iso23,Iso24和Iso32显示出对尖孢酵母f.sp.的高度拮抗活性。辣椒在体外。在双重文化中,Iso32(73.3%)和Iso24(71.5%)引起的病原体抑制水平最高。在温室试验中,用Iso32(8.8%)和Iso24(10.2%)处理的人工接种辣椒植物的发病率(PDI)降低了百分比,疾病比控制减少了85.6%和83.3%,分别。Iso32和Iso24处理过的辣椒种子显示出更高的种子活力指数分别为973.7和948.8,与未处理的对照636.5相比。此外,在卷纸毛巾法下,两种分离物均显着增加了植物的株高以及辣椒植物的鲜重和干重。形态学,生物化学,和分子表征确定解淀粉芽孢杆菌(MH491049)为关键拮抗剂。这项研究表明,根瘤菌,特别是Iso32和Iso24,可以有效地保护辣椒植物免受枯萎病的侵害,同时促进植物的整体发育。这些发现为辣椒种植中枯萎病的可持续和生态友好管理提供了希望。
    In the eastern coastal regions of Odisha, wilt caused by Fusarium oxysporum f. sp.capsici is an extremely damaging disease in chilli. This disease is very difficult to manage with chemical fungicides since it is soil-borne in nature. The natural rhizosphere soil of the chilli plant was used to isolate and test bacterial antagonists for their effectiveness and ability to promote plant growth. Out of the fifty-five isolates isolated from the rhizosphere of healthy chilli plants, five isolates, namely Iso 01, Iso 17, Iso 23, Iso 24, and Iso 32, showed their highly antagonistic activity against F. oxysporum f. sp. capsici under in vitro. In a dual culture, Iso 32 (73.3%) and Iso 24 (71.5%) caused the highest level of pathogen inhibition. In greenhouse trials, artificially inoculated chilli plants treated with Iso 32 (8.8%) and Iso 24 (10.2%) had decreased percent disease incidence (PDI), with percent disease reduction over control of 85.6% and 83.3%, respectively. Iso 32 and Iso 24 treated chilli seeds have shown higher seed vigor index of 973.7 and 948.8, respectively, as compared to untreated control 636.5. Furthermore, both the isolates significantly increased plant height as well as the fresh and dry weight of chilli plants under the rolled paper towel method. Morphological, biochemical, and molecular characterization identified Bacillus amyloliquefaciens (MH491049) as the key antagonist. This study demonstrates that rhizobacteria, specifically Iso 32 and Iso 24, can effectively protect chilli plants against Fusarium wilt while promoting overall plant development. These findings hold promise for sustainable and eco-friendly management of Fusarium wilt in chilli cultivation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    镰刀菌冠腐病(FCR),由镰刀菌引起。,是小麦种植区的毁灭性疾病。以前的研究表明,FCR是由同时感染禾谷镰刀菌引起的,F.假赤霉,湖北省F.proliferatum和F.writicillioides,中国。在这项研究中,开发了一种同时检测F.graminearumDNA的方法,F.假赤霉,可以有效区分它们的F.proliferatum和F.roticillioides。这四个镰刀菌的全基因组序列比较。进行,并设计了20bp序列作为通用上游引物。还设计了每种病原体的特异性下游引物,每个病原体产生206、482、680和963bp的扩增子,分别。多重PCR专门鉴定了禾谷镰刀菌,F.假赤霉,F.增殖和轮虫,但不来自其他46种病原体,目标病原体的检测限约为100pg/μl。此外,我们使用优化的多重PCR方法准确地确定了小麦样品中的FCR病原体种类。这些结果表明,本研究建立的多重PCR方法可以高效、快速地鉴定禾谷菌株。F.假赤霉,F.增殖,和F.verticillioides,为及时、有针对性地预防和控制FCR提供技术支持。
    Fusarium crown rot (FCR), caused by Fusarium spp., is a devastating disease in wheat growing areas. Previous studies have shown that FCR is caused by co-infection of F. graminearum, F. pseudograminearum, F. proliferatum and F. verticillioides in Hubei Province, China. In this study, a method was developed to simultaneously detected DNAs of F. graminearum, F. pseudograminearum, F. proliferatum and F. verticillioides that can efficiently differentiate them. Whole genome sequence comparison of these four Fusarium spp. was performed and a 20 bp sequence was designed as an universal upstream primer. Specific downstream primers of each pathogen was also designed, which resulted in a 206, 482, 680, and 963 bp amplicon for each pathogen, respectively. Multiplex PCR specifically identified F. graminearum, F. pseudograminearum, F. proliferatum and F. verticillioides but not from other 46 pathogens, and the detection limit of target pathogens is about 100 pg/μl. Moreover, we accurately determined the FCR pathogen species in wheat samples using the optimized multiplex PCR method. These results demonstrate that the multiplex PCR method established in this study can efficiently and rapidly identify F. graminearum, F. pseudograminearum, F. proliferatum, and F. verticillioides, which should provide technical support for timely and targeted prevention and control of FCR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    小麦茎锈病,这是由Pucciniagraminisf.sp.引起的。小麦(Pgt),是一种在全球范围内影响小麦作物的高度破坏性疾病。在这项研究中,在2019-2020年和2020-2021年生长季节的成年植物阶段,评估了150个面包小麦品种的自然Pgt感染的反应,并使用特定的分子标记对它们进行分析以检测茎锈病抗性基因(Sr22,Sr24,Sr25,Sr26,Sr31,Sr38,Sr50和Sr57)。根据表型数据,大多数品种(62%)对天然Pgt感染具有抗性或中度抗性。根据分子结果,确定Sr57存在于103个品种中,九个品种的Sr50,六个品种的Sr25,和Sr22、Sr31和Sr38各一个品种。此外,在这些品种中检测到它们的组合Sr25Sr50,Sr31Sr57,Sr38Sr50和Sr38Sr57。另一方面,未鉴定出Sr24和Sr26。此外,许多品种的茎锈病评分较低,包括缺少Sr57的少数人。这些品种必须对茎锈病具有有用的抵抗力,并且可以作为选择更大的基础,可能持久的阻力。
    Wheat stem rust, which is caused by Puccinia graminis f. sp. tritici (Pgt), is a highly destructive disease that affects wheat crops on a global scale. In this study, the reactions of 150 bread wheat varieties were evaluated for natural Pgt infection at the adult-plant stage in the 2019-2020 and 2020-2021 growing seasons, and they were analyzed using specific molecular markers to detect stem rust resistance genes (Sr22, Sr24, Sr25, Sr26, Sr31, Sr38, Sr50, and Sr57). Based on phenotypic data, the majority of the varieties (62%) were resistant or moderately resistant to natural Pgt infection. According to molecular results, it was identified that Sr57 was present in 103 varieties, Sr50 in nine varieties, Sr25 in six varieties, and Sr22, Sr31, and Sr38 in one variety each. Additionally, their combinations Sr25 + Sr50, Sr31 + Sr57, Sr38 + Sr50, and Sr38 + Sr57 were detected in these varieties. On the other hand, Sr24 and Sr26 were not identified. In addition, many varieties had low stem rust scores, including a large minority that lacked Sr57. These varieties must have useful resistance to stem rust and could be the basis for selecting greater, possibly durable resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物会经历各种环境压力,这些压力会极大地影响其适应性和生存。此外,生物胁迫会危害农业,导致全球农作物产量下降和经济损失。因此,植物已经制定了防御策略来对抗潜在的入侵者。这些策略涉及调节氧化还原稳态。一些研究记录了植物抗氧化剂的积极作用,包括抗坏血酸(Asc),在生物胁迫条件下。Asc是一种多方面的抗氧化剂,可以清除ROS,作为不同酶的辅因子,调节基因表达,方便铁的运输。然而,对Asc及其运输的关注很少,调节作用,与植物激素相互作用,参与生物应激下的防御过程。Asc与氧化还原系统的其他成分和植物激素相互作用,以激活各种防御反应,从而减少植物病原体的生长并促进植物在生物胁迫条件下的生长和发育。科学报告表明,Asc可以通过与氧化还原和激素系统成分的相互作用显着促进植物对生物胁迫的抗性。本文就Asc在提高植物抗病性中的作用作一综述。需要进一步的研究才能更全面地了解所涉及的分子和细胞调节过程。
    Plants can experience a variety of environmental stresses that significantly impact their fitness and survival. Additionally, biotic stress can harm agriculture, leading to reduced crop yields and economic losses worldwide. As a result, plants have developed defense strategies to combat potential invaders. These strategies involve regulating redox homeostasis. Several studies have documented the positive role of plant antioxidants, including Ascorbate (Asc), under biotic stress conditions. Asc is a multifaceted antioxidant that scavenges ROS, acts as a co-factor for different enzymes, regulates gene expression, and facilitates iron transport. However, little attention has been given to Asc and its transport, regulatory effects, interplay with phytohormones, and involvement in defense processes under biotic stress. Asc interacts with other components of the redox system and phytohormones to activate various defense responses that reduce the growth of plant pathogens and promote plant growth and development under biotic stress conditions. Scientific reports indicate that Asc can significantly contribute to plant resistance against biotic stress through mutual interactions with components of the redox and hormonal systems. This review focuses on the role of Asc in enhancing plant resistance against pathogens. Further research is necessary to gain a more comprehensive understanding of the molecular and cellular regulatory processes involved.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    垂直传动,病原体跨代转移,是植物病毒持续存在的关键机制。传播机制多种多样,在实现共生体分离之前,涉及通过悬液直接入侵和病毒进入发育中的配子。尽管在理解病毒垂直传播方面取得了进展,影响这一过程的环境因素在很大程度上仍未被探索。我们调查了植物病毒垂直传播与授粉动力学之间的复杂相互作用,专注于普通豆(菜豆)。植物和传粉者之间错综复杂的关系,尤其是蜜蜂,对全球生态系统和作物生产力至关重要。我们探讨了病毒感染对种子传播率的影响,特别强调豆类普通花叶病毒(BCMV),豆普通花叶坏死病毒(BCMNV),和黄瓜花叶病毒(CMV)。在受控生长条件下,BCMNV表现出最高的种子传输速率,其次是BCMV和CMV。值得注意的是,在野外,与自花授粉的植物相比,蜜蜂授粉的BCMV感染的植物的传播率降低。这突出了传粉者对病毒传播动力学的影响。研究结果证明了种子传播的病毒特异性,并强调了考虑环境因素的重要性,比如授粉,了解和管理植物病毒传播。
    Vertical transmission, the transfer of pathogens across generations, is a critical mechanism for the persistence of plant viruses. The transmission mechanisms are diverse, involving direct invasion through the suspensor and virus entry into developing gametes before achieving symplastic isolation. Despite the progress in understanding vertical virus transmission, the environmental factors influencing this process remain largely unexplored. We investigated the complex interplay between vertical transmission of plant viruses and pollination dynamics, focusing on common bean (Phaseolus vulgaris). The intricate relationship between plants and pollinators, especially bees, is essential for global ecosystems and crop productivity. We explored the impact of virus infection on seed transmission rates, with a particular emphasis on bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV), and cucumber mosaic virus (CMV). Under controlled growth conditions, BCMNV exhibited the highest seed transmission rate, followed by BCMV and CMV. Notably, in the field, bee-pollinated BCMV-infected plants showed a reduced transmission rate compared to self-pollinated plants. This highlights the influence of pollinators on virus transmission dynamics. The findings demonstrate the virus-specific nature of seed transmission and underscore the importance of considering environmental factors, such as pollination, in understanding and managing plant virus spread.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    灰霉病是造成农业生产重大损失的毁灭性疾病,灰霉病菌是一种坏死性模型真菌植物病原体。膜蛋白是杀菌剂的重要靶标,也是杀菌剂产品研发的热点。武义恩辛影响灰霉病菌的通透性和致病性,平行反应监测揭示了膜蛋白Bcsdr2的缔合,并阐明了五味子素的抑菌机理。在目前的工作中,我们产生并表征了ΔBcsdr2缺失,并补充了突变的B.cinerea菌株。ΔBcsdr2缺失突变体表现出生物膜丢失和溶解,草莓和葡萄果实坏死定植减少说明了它们的功能活性。Bcsdr2的靶向缺失也阻断了菌丝体生长方面的几种表型缺陷,分生孢子和毒力。通过靶向基因互补恢复所有表型缺陷。定量实时RT-PCR结果也支持了Bcsdr2在生物膜和致病性中的作用,结果表明,磷脂酰丝氨酸脱羧酶合成基因Bcpsd和几丁质合酶基因BcCHSVII在ΔBcsdr2菌株的感染早期被下调。结果表明,Bcsdr2在调节灰霉病菌的各种细胞过程中起着重要作用。要点:•乌依恩辛抑制灰白芽孢杆菌的机制与膜蛋白密切相关。•Wuyiencin可以下调灰霉病中膜蛋白Bcsdr2的表达。•Bcsdr2参与调节灰霉病毒力,成长和发展。
    Grey mould caused by Botrytis cinerea is a devastating disease responsible for large losses to agricultural production, and B. cinerea is a necrotrophic model fungal plant pathogen. Membrane proteins are important targets of fungicides and hotspots in the research and development of fungicide products. Wuyiencin affects the permeability and pathogenicity of B. cinerea, parallel reaction monitoring revealed the association of membrane protein Bcsdr2, and the bacteriostatic mechanism of wuyiencin was elucidated. In the present work, we generated and characterised ΔBcsdr2 deletion and complemented mutant B. cinerea strains. The ΔBcsdr2 deletion mutants exhibited biofilm loss and dissolution, and their functional activity was illustrated by reduced necrotic colonisation on strawberry and grape fruits. Targeted deletion of Bcsdr2 also blocked several phenotypic defects in aspects of mycelial growth, conidiation and virulence. All phenotypic defects were restored by targeted gene complementation. The roles of Bcsdr2 in biofilms and pathogenicity were also supported by quantitative real-time RT-PCR results showing that phosphatidylserine decarboxylase synthesis gene Bcpsd and chitin synthase gene BcCHSV II were downregulated in the early stages of infection for the ΔBcsdr2 strain. The results suggest that Bcsdr2 plays important roles in regulating various cellular processes in B. cinerea. KEY POINTS: • The mechanism of wuyiencin inhibits B. cinerea is closely associated with membrane proteins. • Wuyiencin can downregulate the expression of the membrane protein Bcsdr2 in B. cinerea. • Bcsdr2 is involved in regulating B. cinerea virulence, growth and development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:炭疽病真菌感染多种单子叶植物和双子叶植物宿主,在全世界几乎所有经济上重要的植物上引起疾病。炭疽病也是一个合适的模型,用于在精细尺度上研究基因家族进化,以揭示基因组中与生物学变化相关的事件。
    结果:在这里,我们介绍了30种炭疽病属物种的基因组序列,涵盖了该属内的多样性。进化分析表明,白垩纪晚期的炭疽病祖先与开花植物的多样化同时发生了分歧。我们提供了在Colletotrichum进化过程中从双子叶植物到单子叶植物的独立宿主跳跃的证据,与植物细胞壁降解武器库的逐渐缩小和谱系特异性基因家族的扩展相吻合。适应不同宿主的4个物种的比较转录组学显示,基因含量相似,但在不同植物底物上调节其转录谱的高度多样性。结合基因组学和转录组学,我们确定了一组核心基因,如特定的转录因子,推测参与植物细胞壁降解。
    结论:这些结果表明,祖先炭疽病与双子叶植物有关,某些分支逐渐适应不同的单子叶植物寄主,重塑基因含量及其调控。
    BACKGROUND: Colletotrichum fungi infect a wide diversity of monocot and dicot hosts, causing diseases on almost all economically important plants worldwide. Colletotrichum is also a suitable model for studying gene family evolution on a fine scale to uncover events in the genome associated with biological changes.
    RESULTS: Here we present the genome sequences of 30 Colletotrichum species covering the diversity within the genus. Evolutionary analyses revealed that the Colletotrichum ancestor diverged in the late Cretaceous in parallel with the diversification of flowering plants. We provide evidence of independent host jumps from dicots to monocots during the evolution of Colletotrichum, coinciding with a progressive shrinking of the plant cell wall degradative arsenal and expansions in lineage-specific gene families. Comparative transcriptomics of 4 species adapted to different hosts revealed similarity in gene content but high diversity in the modulation of their transcription profiles on different plant substrates. Combining genomics and transcriptomics, we identified a set of core genes such as specific transcription factors, putatively involved in plant cell wall degradation.
    CONCLUSIONS: These results indicate that the ancestral Colletotrichum were associated with dicot plants and certain branches progressively adapted to different monocot hosts, reshaping the gene content and its regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    亚洲柑橘木虱(ACP)DiaphorinacitriKuwayama是亚洲念珠菌(CLas)的主要载体,柑橘黄龙病(HLB)的致病原。ACP内部CLA的分布和动态对于理解传输如何,CLas的传播和感染在自然界中发生在其宿主载体内。在这项研究中,通过荧光原位杂交(FISH)和实时定量PCR(qPCR)技术检测了CLas在ACP5龄若虫和成虫各种组织中的分布和滴度变化。结果表明,以被感染的植物为食后,ACP5龄若虫和成虫100%被CLas感染,CLas在ACP的大多数组织中广泛分布。中肠内CLas的滴度,5龄若虫和成虫的唾液腺和血淋巴组织最高。与成年人相比,5龄若虫的这三个组织中的CLas滴度明显更高,在mycetome中,卵巢和睾丸明显低于成人。FISH可视化进一步证实了这些发现。对CLas的动态分析表明,它存在于ACP成年人的所有发育年龄中。在ACP成人的大多数组织中,随着年龄的增长,CLas的存在呈明显的上升趋势,包括中肠,血淋巴,唾液腺,脚,头部,角质层和肌肉。我们的发现对全面了解传播具有重要意义,CLas的传播和侵扰,这对于制定新的策略来阻止CLas的传播非常重要,因此有助于HLB的有效预防和控制。
    The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama is the leading vector of Candidatus Liberibacter asiaticus (CLas), the causative agent of citrus Huanglongbing (HLB) disease. The distribution and dynamics of CLas within ACP are critical to understanding how the transmission, spread and infection of CLas occurs within its host vector in nature. In this study, the distribution and titer changes of CLas in various tissues of ACP 5th instar nymphs and adults were examined by fluorescence in situ hybridization (FISH) and real-time quantitative PCR (qPCR) techniques. Results demonstrated that 100% of ACP 5th instar nymphs and adults were infected with CLas following feeding on infected plants, and that CLas had widespread distribution in most of the tissues of ACP. The titers of CLas within the midgut, salivary glands and hemolymph tissues were the highest in both 5th instar nymphs and adults. When compared with adults, the titers of CLas in these three tissues of 5th instar nymphs were significantly higher, while in the mycetome, ovary and testes they were significantly lower than those of adults. FISH visualization further confirmed these findings. Dynamic analysis of CLas demonstrated that it was present across all the developmental ages of ACP adults. There was a discernible upward trend in the presence of CLas with advancing age in most tissues of ACP adults, including the midgut, hemolymph, salivary glands, foot, head, cuticula and muscle. Our findings have significant implications for the comprehensive understanding of the transmission, dissemination and infestation of CLas, which is of much importance for developing novel strategies to halt the spread of CLas, and therefore contribute to the efficient prevention and control of HLB.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号