Nanostructures

纳米结构
  • 文章类型: Journal Article
    生物电子学,一个监测和刺激生物过程的关键领域,需要创新的纳米材料作为检测平台。二维(2D)材料,它们的薄结构和特殊的物理化学性质,已经成为这项研究中的关键物质。然而,由于与生物相容性相关的问题,这些材料在生物医学应用中面临挑战,适应性,功能,和纳米生物表面特性。这篇综述研究了使用基于共价和非共价的聚合物功能化策略的表面修饰,以通过增强生物相容性来克服这些限制。适应性,和二维纳米材料的功能。这些表面修饰旨在创造稳定和持久的治疗效果。为聚合物功能化二维材料在生物传感器和生物电子学中的实际应用铺平了道路。评论论文批判性地总结了具有生物相容性聚合物的2D纳米材料的表面功能化,包括g-C3N4,石墨烯家族,MXene,BP,MOF,和TMDC,突出他们目前的状态,物理化学结构,合成方法,材料特性,以及在生物传感器和生物电子学中的应用。本文最后讨论了前景,挑战,以及不断发展的生物电子学领域的众多机会。
    Bioelectronics, a field pivotal in monitoring and stimulating biological processes, demands innovative nanomaterials as detection platforms. Two-dimensional (2D) materials, with their thin structures and exceptional physicochemical properties, have emerged as critical substances in this research. However, these materials face challenges in biomedical applications due to issues related to their biological compatibility, adaptability, functionality, and nano-bio surface characteristics. This review examines surface modifications using covalent and non-covalent-based polymer-functionalization strategies to overcome these limitations by enhancing the biological compatibility, adaptability, and functionality of 2D nanomaterials. These surface modifications aim to create stable and long-lasting therapeutic effects, significantly paving the way for the practical application of polymer-functionalized 2D materials in biosensors and bioelectronics. The review paper critically summarizes the surface functionalization of 2D nanomaterials with biocompatible polymers, including g-C3N4, graphene family, MXene, BP, MOF, and TMDCs, highlighting their current state, physicochemical structures, synthesis methods, material characteristics, and applications in biosensors and bioelectronics. The paper concludes with a discussion of prospects, challenges, and numerous opportunities in the evolving field of bioelectronics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA折纸纳米结构(DOs)是包括药物递送在内的应用的有前途的工具,生物传感,检测生物分子,探测染色质亚结构。将这些纳米设备靶向哺乳动物细胞核可以为探测提供有效的方法,可视化,并控制活细胞内的生物分子过程。我们提出了一种将DO递送到活细胞核中的方法。我们表明,这些DO在细胞培养基或细胞提取物中24小时内不会发生可检测的结构降解。为了将DOs传递到人类U2OS细胞的细胞核中,我们将30纳米DO纳米棒与针对核因子的抗体结合起来,特别是RNA聚合酶II(PolII)的最大亚基。我们发现DO在细胞中保持结构完整24小时,包括在细胞核内部。我们证明了电穿孔的抗PolII抗体缀合的DOs被搭载到细胞核中,并在细胞核内表现出亚扩散运动。我们的结果建立了具有核因子的接口DO作为将纳米设备递送到活细胞核的有效方法。
    DNA origami nanostructures (DOs) are promising tools for applications including drug delivery, biosensing, detecting biomolecules, and probing chromatin substructures. Targeting these nanodevices to mammalian cell nuclei could provide impactful approaches for probing, visualizing, and controlling biomolecular processes within live cells. We present an approach to deliver DOs into live-cell nuclei. We show that these DOs do not undergo detectable structural degradation in cell culture media or cell extracts for 24 hours. To deliver DOs into the nuclei of human U2OS cells, we conjugated 30-nanometer DO nanorods with an antibody raised against a nuclear factor, specifically the largest subunit of RNA polymerase II (Pol II). We find that DOs remain structurally intact in cells for 24 hours, including inside the nucleus. We demonstrate that electroporated anti-Pol II antibody-conjugated DOs are piggybacked into nuclei and exhibit subdiffusive motion inside the nucleus. Our results establish interfacing DOs with a nuclear factor as an effective method to deliver nanodevices into live-cell nuclei.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA纳米结构长期以来一直被开发用于生物医学目的,但是它们在体内的受控递送对疾病疗法提出了重大挑战。我们以前报道过,几十和几百纳米尺度的DNA纳米结构显示出优先的肾脏排泄或肾脏滞留,允许对肾功能进行灵敏的评估和有效的保护,对单侧输尿管梗阻或急性肾损伤等事件的反应。受到积极成果的鼓舞,我们把注意力转向肝脏,特别针对明显缺乏DNA材料的器官,探索DNA纳米结构与肝脏之间的相互作用。通过PET成像,我们将SDF和M13鉴定为DNA纳米结构,在众多候选物中表现为在肝脏中显著积累.最初,我们调查并评估了它们的生物分布,毒性,和健康小鼠的免疫原性,建立正常小鼠DNA纳米结构的结构-功能关系。随后,我们采用肝脏缺血再灌注损伤(IRI)小鼠模型来验证SDF和M13在更具挑战性的病理条件下的纳米生物相互作用.M13不仅加剧了肝脏氧化损伤,而且还升高了局部细胞凋亡水平。相比之下,SDF表现出明显的清除肝脏氧化反应的能力,从而减轻肝细胞损伤。这些令人信服的结果强调了SDF作为肝脏相关病症的有希望的治疗剂的潜力。本文旨在阐明它们在肝损伤中的作用和机制,为DNA纳米结构的生物医学应用提供了新的视角。
    DNA nanostructures have long been developed for biomedical purposes, but their controlled delivery in vivo proposes a major challenge for disease theranostics. We previously reported that DNA nanostructures on the scales of tens and hundreds nanometers showed preferential renal excretion or kidney retention, allowing for sensitive evaluation and effective protection of kidney function, in response to events such as unilateral ureter obstruction or acute kidney injury. Encouraged by the positive results, we redirected our focus to the liver, specifically targeting organs noticeably lacking DNA materials, to explore the interaction between DNA nanostructures and the liver. Through PET imaging, we identified SDF and M13 as DNA nanostructures exhibiting significant accumulation in the liver among numerous candidates. Initially, we investigated and assessed their biodistribution, toxicity, and immunogenicity in healthy mice, establishing the structure-function relationship of DNA nanostructures in the normal murine. Subsequently, we employed a mouse model of liver ischemia-reperfusion injury (IRI) to validate the nano-bio interactions of SDF and M13 under more challenging pathological conditions. M13 not only exacerbated hepatic oxidative injury but also elevated local apoptosis levels. In contrast, SDF demonstrated remarkable ability to scavenge oxidative responses in the liver, thereby mitigating hepatocyte injury. These compelling results underscore the potential of SDF as a promising therapeutic agent for liver-related conditions. This aimed to elucidate their roles and mechanisms in liver injury, providing a new perspective for the biomedical applications of DNA nanostructures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:前列腺癌(PCa)在全球男性中发病率很高,几乎所有PCa患者都进展到雄激素非依赖性阶段,缺乏有效的治疗措施。PTENP1,一种长非编码RNA,已显示通过竞争性内源性RNA(ceRNA)机制挽救PTEN表达来抑制肿瘤生长。然而,PTENP1由于酶的快速降解而被限制在PCa的处理中,细胞内摄取差,和过长的碱基序列要合成。考虑到人工纳米材料在药物装载和运输方面的独特优势,本研究采用黑磷(BP)纳米片作为基因药物载体。
    结果:以PTENP1序列为模板,随机分成4个长度约1000个核苷酸碱基的片段,合成4个不同的RNA片段作为基因药物,并加载到聚乙烯亚胺(PEI)修饰的BP纳米片上以构建BP-PEI@RNA递送平台。RNA可以通过BP-PEI纳米片有效地递送到PC3细胞中,并通过靶向PTENmRNA的竞争性结合microRNA(miRNA)提高PTEN表达,最终发挥抗肿瘤作用。
    结论:因此,这项研究表明,BP-PEI@RNA是PCa治疗的一个有前途的基因治疗平台。
    BACKGROUND: Prostate cancer (PCa) has a high incidence in men worldwide, and almost all PCa patients progress to the androgen-independent stage which lacks effective treatment measures. PTENP1, a long non-coding RNA, has been shown to suppress tumor growth through the rescuing of PTEN expression via a competitive endogenous RNA (ceRNA) mechanism. However, PTENP1 was limited to be applied in the treatment of PCa for the reason of rapid enzymatic degradation, poor intracellular uptake, and excessively long base sequence to be synthesized. Considering the unique advantages of artificial nanomaterials in drug loading and transport, black phosphorus (BP) nanosheet was employed as a gene-drug carrier in this study.
    RESULTS: The sequence of PTENP1 was adopted as a template which was randomly divided into four segments with a length of about 1000 nucleotide bases to synthesize four different RNA fragments as gene drugs, and loaded onto polyethyleneimine (PEI)-modified BP nanosheets to construct BP-PEI@RNA delivery platforms. The RNAs could be effectively delivered into PC3 cells by BP-PEI nanosheets and elevating PTEN expression by competitive binding microRNAs (miRNAs) which target PTEN mRNA, ultimately exerting anti-tumor effects.
    CONCLUSIONS: Therefore, this study demonstrated that BP-PEI@RNAs is a promising gene therapeutic platform for PCa treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    种植牙治疗,近三十年前,随着微型钛表面的出现,被确立为护理标准,通过增强骨整合彻底改变了临床结果。然而,尽管取得了如此关键的进步,挑战依然存在,包括延长的愈合时间,限制性临床适应症,稳定的成功率,和种植体周围炎的显著发病率。这篇综述探讨了微表面的生物学优点和局限性,并评估了纳米特征牙种植体表面的现状,旨在阐明解决植入治疗中现有障碍的策略。目前可用的纳米特征牙科植入物将纳米结构结合到其前身的微粗糙表面上。虽然纳米特征整合到微粗糙表面显示出增强早期骨整合的潜力,在骨整合能力方面,它没有超过其前辈。这种差异可能是由于,在某种程度上,成骨细胞固有的“二分法动力学”,其中通过纳米特征增加的表面粗糙度增强成骨细胞分化,但同时阻碍细胞附着和增殖。我们还展示了一个可控的,混合微纳米钛模型表面,并将其与市售纳米特征表面进行对比。与商业纳米特征表面不同,可控微纳米杂化表面具有增强细胞分化和增殖的优势。因此,目前的纳米特征牙种植体代表了从传统的微型种植体进化的一步,然而,他们目前缺乏克服现有限制的变革能力。进一步的研究和开发努力必须设计根植于基础科学的优化表面,从而推动该领域的技术进步。
    Dental implant therapy, established as standard-of-care nearly three decades ago with the advent of microrough titanium surfaces, revolutionized clinical outcomes through enhanced osseointegration. However, despite this pivotal advancement, challenges persist, including prolonged healing times, restricted clinical indications, plateauing success rates, and a notable incidence of peri-implantitis. This review explores the biological merits and constraints of microrough surfaces and evaluates the current landscape of nanofeatured dental implant surfaces, aiming to illuminate strategies for addressing existing impediments in implant therapy. Currently available nanofeatured dental implants incorporated nano-structures onto their predecessor microrough surfaces. While nanofeature integration into microrough surfaces demonstrates potential for enhancing early-stage osseointegration, it falls short of surpassing its predecessors in terms of osseointegration capacity. This discrepancy may be attributed, in part, to the inherent \"dichotomy kinetics\" of osteoblasts, wherein increased surface roughness by nanofeatures enhances osteoblast differentiation but concomitantly impedes cell attachment and proliferation. We also showcase a controllable, hybrid micro-nano titanium model surface and contrast it with commercially-available nanofeatured surfaces. Unlike the commercial nanofeatured surfaces, the controllable micro-nano hybrid surface exhibits superior potential for enhancing both cell differentiation and proliferation. Hence, present nanofeatured dental implants represent an evolutionary step from conventional microrough implants, yet they presently lack transformative capacity to surmount existing limitations. Further research and development endeavors are imperative to devise optimized surfaces rooted in fundamental science, thereby propelling technological progress in the field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Chirality,具有镜像形式的分子的性质,在制药和生物医学研究中起着至关重要的作用。这篇评论强调了它日益增长的重要性,强调手性药物和纳米材料如何影响药物有效性,安全,和诊断。手性分子作为精确的诊断工具,通过独特的生物分子相互作用帮助准确的疾病检测。这篇文章广泛涵盖了手性药物在治疗心血管疾病中的应用,中枢神经系统疾病,局部麻醉,抗炎药,抗菌药物,和抗癌药物。此外,它探索了手性纳米材料的新兴领域,强调它们在诊断和治疗中的生物医学应用的适用性,加强医疗。
    Chirality, the property of molecules having mirror-image forms, plays a crucial role in pharmaceutical and biomedical research. This review highlights its growing importance, emphasizing how chiral drugs and nanomaterials impact drug effectiveness, safety, and diagnostics. Chiral molecules serve as precise diagnostic tools, aiding in accurate disease detection through unique biomolecule interactions. The article extensively covers chiral drug applications in treating cardiovascular diseases, CNS disorders, local anesthesia, anti-inflammatories, antimicrobials, and anticancer drugs. Additionally, it explores the emerging field of chiral nanomaterials, highlighting their suitability for biomedical applications in diagnostics and therapeutics, enhancing medical treatments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纳米材料由于其可调节和适应性而成为疫苗开发的重要工具。纳米材料的独特性质为调节通过各种组织的运输提供了机会,补充或增强佐剂活性,并指定抗原价和显示。这种多功能性使最近的工作能够为各种疾病设计纳米材料疫苗,包括癌症,炎症性疾病,和各种传染病。在2019年冠状病毒病(COVID-19)大流行期间,纳米颗粒疫苗的近期成功进一步激发了人们的热情。在这次审查中,用于传染病的纳米疫苗的最新发展,癌症,炎症性疾病,过敏性疾病,和纳米佐剂进行了总结。此外,讨论了这一类独特材料的临床翻译面临的挑战和机遇。
    Nanomaterials are becoming important tools for vaccine development owing to their tunable and adaptable nature. Unique properties of nanomaterials afford opportunities to modulate trafficking through various tissues, complement or augment adjuvant activities, and specify antigen valency and display. This versatility has enabled recent work designing nanomaterial vaccines for a broad range of diseases, including cancer, inflammatory diseases, and various infectious diseases. Recent successes of nanoparticle vaccines during the coronavirus disease 2019 (COVID-19) pandemic have fueled enthusiasm further. In this review, the most recent developments in nanovaccines for infectious disease, cancer, inflammatory diseases, allergic diseases, and nanoadjuvants are summarized. Additionally, challenges and opportunities for clinical translation of this unique class of materials are discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在本文中,相同的V形金纳米结构和可变V形金纳米结构的周期性阵列被设计在具有薄的二氧化钒(VO2)间隔层的镀金二氧化硅(SiO2)衬底的顶部,以实现多波长和宽带等离子体开关,分别。具有小的粒子间分离的相同V形纳米结构(IVNS)的周期性阵列导致V形纳米结构(VNS)的基本等离子体激元的耦合相互作用,当入射光在x方向上偏振时,在所提出的开关的反射光谱中产生具有两个纵向等离子体激元模式的混合等离子体激元响应。X方向沿着连接周期性阵列的一个单位单元中的所有VNS的V结的轴取向。暴露在温度下,电场,或者光学刺激,VO2层从其单斜半导体状态转变为金红石金属状态,导致从所提出的纳米结构获得的反射光谱的整体变化,并导致有效的多波长切换作用。采用有限差分时域(FDTD)模型来证明,通过采用相同的V形纳米结构的周期性阵列,可以通过采用所提出的开关来实现在两个波长处的消光比>12dB。Further,基于可变V形纳米结构(VVNS)的等离子体开关-即,提出了在周期性阵列的一个单位单元中具有可变臂长度的多个VNS,用于宽带开关。在宽带操作模式下,我们报告了一个消光比>5分贝的工作波长范围>1400nm在近红外光谱范围跨越所有光通信频带,即,O,E,S,C,L和U波段。Further,还证明了这些开关的操作波长可以通过改变所提出的开关的几何参数来调节。这些交换机具有在通信网络中使用的潜力,其中不可避免地需要具有多波长操作或在宽操作带宽上切换的超小型和超快交换机。
    In this paper, periodic arrays of identical V-shaped gold nanostructures and variable V-shaped gold nanostructures are designed on top of a gold-coated silicon dioxide (SiO2) substrate with a thin spacer layer of vanadium dioxide (VO2) to realize multi-wavelength and broadband plasmonic switches, respectively. The periodic array of identical V-shaped nanostructures (IVNSs) with small inter-particle separation leads to coupled interactions of the elementary plasmons of a V-shaped nanostructure (VNS), resulting in a hybridized plasmon response with two longitudinal plasmonic modes in the reflectance spectra of the proposed switches when the incident light is polarized in the x-direction. The x-direction is oriented along the axis that joins the V-junctions of all VNSs in one unit cell of the periodic array. On exposure to temperature, electric field, or optical stimulus, the VO2 layer transforms from its monoclinic semiconducting state to its rutile metallic state, leading to an overall change in the reflectance spectra obtained from the proposed nanostructures and resulting in an efficient multi-wavelength switching action. Finite difference time domain (FDTD) modelling is employed to demonstrate that an extinction ratio > 12 dB at two wavelengths can be achieved by employing the proposed switches by employing periodic arrays of identical V-shaped nanostructures. Further, plasmonic switches based on variable V-shaped nanostructures (VVNSs) - i.e., multiple VNSs with variable arm lengths in one unit cell of a periodic array - are proposed for broadband switching. In the broadband operation mode, we report an extinction ratio > 5 dB over an operational wavelength range > 1400 nm in the near-IR spectral range spanning over all optical communication bands, i.e., the O, E, S, C, L and U bands. Further, it is also demonstrated that the wavelength of operation for these switches can be tuned by varying the geometrical parameters of the proposed switches. These switches have the potential to be employed in communication networks where ultrasmall and ultrafast switches with multi-wavelength operation or switching over a wide operational bandwidth are inevitably required.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物技术的一个新领域是纳米技术。纳米技术是一个新兴领域,旨在开发具有纳米尺寸的各种物质,这些物质可用于制药的各个领域,生物勘探,人类活动和生物医学应用。纳米技术发展的一个重要阶段是纳米粒子的创造。为了增加它们的生物用途,环保材料合成工艺变得越来越重要。近年来,由于与多晶对应物相比,它们具有有益和独特的特性,因此对纳米结构材料表现出了极大的兴趣。纳米材料在电子学中的迷人表现,光学,光子学引起了很多兴趣。为了克服传统技术的缺点,已经出现了一种创造纳米颗粒的环保方法。今天,通过使用各种微生物产生了广泛的纳米颗粒,并研究了它们在许多尖端技术领域的潜力。这些颗粒具有明确的化学成分,尺寸,和形态。纳米粒子的绿色生产主要使用植物和微生物。因此,微生物纳米技术在农业和植物科学中的应用是本综述的主要重点。本综述重点介绍了可用的纳米颗粒的生物合成方法,主要关注微生物合成的纳米颗粒,参数和涉及的生物化学。Further,它考虑到微生物纳米生物合成中涉及的基因工程和合成生物学来构建微生物纳米工厂。
    A new area of biotechnology is nanotechnology. Nanotechnology is an emerging field that aims to develope various substances with nano-dimensions that have utilization in the various sectors of pharmaceuticals, bio prospecting, human activities and biomedical applications. An essential stage in the development of nanotechnology is the creation of nanoparticles. To increase their biological uses, eco-friendly material synthesis processes are becoming increasingly important. Recent years have shown a lot of interest in nanostructured materials due to their beneficial and unique characteristics compared to their polycrystalline counterparts. The fascinating performance of nanomaterials in electronics, optics, and photonics has generated a lot of interest. An eco-friendly approach of creating nanoparticles has emerged in order to get around the drawbacks of conventional techniques. Today, a wide range of nanoparticles have been created by employing various microbes, and their potential in numerous cutting-edge technological fields have been investigated. These particles have well-defined chemical compositions, sizes, and morphologies. The green production of nanoparticles mostly uses plants and microbes. Hence, the use of microbial nanotechnology in agriculture and plant science is the main emphasis of this review. The present review highlights the methods of biological synthesis of nanoparticles available with a major focus on microbially synthesized nanoparticles, parameters and biochemistry involved. Further, it takes into account the genetic engineering and synthetic biology involved in microbial nanobiosynthesis to the construction of microbial nanofactories.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    心肌梗塞,通常由动脉粥样硬化斑块破裂引起,导致数小时内不可逆的缺血性心肌细胞死亡,随后心脏功能受损甚至心力衰竭。随着心力衰竭的发展,目前心肌梗死的介入再灌注策略仍然面临着高死亡率。以纳米材料为基础的治疗在减少心肌梗死面积和促进心肌梗死后心脏修复方面取得了很大进展。尽管大多数研究都是临床前试验。这篇综述主要集中在各种纳米药物治疗心肌梗死的最新进展(2016年至今)。我们总结了这些应用的机制策略,包括抗心肌细胞死亡策略,激活新生血管,抗氧化剂策略,免疫调节,抗心脏重塑,和心脏修复。
    Myocardial infarction, usually caused by the rupture of atherosclerotic plaque, leads to irreversible ischemic cardiomyocyte death within hours followed by impaired cardiac performance or even heart failure. Current interventional reperfusion strategies for myocardial infarction still face high mortality with the development of heart failure. Nanomaterial-based therapy has made great progress in reducing infarct size and promoting cardiac repair after MI, although most studies are preclinical trials. This review focuses primarily on recent progress (2016-now) in the development of various nanomedicines in the treatment of myocardial infarction. We summarize these applications with the strategy of mechanism including anti-cardiomyocyte death strategy, activation of neovascularization, antioxidants strategy, immunomodulation, anti-cardiac remodeling, and cardiac repair.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号