Models, Neurological

模型,Neurological
  • 文章类型: Journal Article
    星形胶质细胞在突触强度的调节中起关键作用,并且被认为协调突触可塑性和记忆。然而,星形胶质细胞及其神经活性递质如何控制学习和记忆是目前一个悬而未决的问题。最近的实验发现了CA1锥体神经元中星形胶质细胞介导的反馈回路,该回路由活跃神经元释放内源性大麻素开始,并由星形胶质细胞调节树突上的D-丝氨酸水平封闭。D-丝氨酸是调节突触可塑性的强度和方向的NMDA受体的共激动剂。因此,由星形胶质细胞介导的活性依赖性D-丝氨酸释放是在学习过程中介导长期突触抑制(LTD)和增强(LTP)的候选者。这里,我们证明了这种机制的数学描述导致了与称为BCM模型的现象学模型一致的突触可塑性的生物物理模型。所得的数学框架可以解释在D-丝氨酸调节机制破坏后在小鼠中观察到的学习缺陷。它表明D-丝氨酸在反转学习过程中增强可塑性,确保对外部环境变化的快速反应。该模型提供了关于学习过程的新的可测试预测,推动我们对神经元-神经胶质相互作用在学习中的功能作用的理解。
    Astrocytes play a key role in the regulation of synaptic strength and are thought to orchestrate synaptic plasticity and memory. Yet, how specifically astrocytes and their neuroactive transmitters control learning and memory is currently an open question. Recent experiments have uncovered an astrocyte-mediated feedback loop in CA1 pyramidal neurons which is started by the release of endocannabinoids by active neurons and closed by astrocytic regulation of the D-serine levels at the dendrites. D-serine is a co-agonist for the NMDA receptor regulating the strength and direction of synaptic plasticity. Activity-dependent D-serine release mediated by astrocytes is therefore a candidate for mediating between long-term synaptic depression (LTD) and potentiation (LTP) during learning. Here, we show that the mathematical description of this mechanism leads to a biophysical model of synaptic plasticity consistent with the phenomenological model known as the BCM model. The resulting mathematical framework can explain the learning deficit observed in mice upon disruption of the D-serine regulatory mechanism. It shows that D-serine enhances plasticity during reversal learning, ensuring fast responses to changes in the external environment. The model provides new testable predictions about the learning process, driving our understanding of the functional role of neuron-glia interaction in learning.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    宏观连接体是物理网络,大脑区域之间的白质束。连接通常是加权的,它们的值被解释为通信效率的度量。在大多数应用中,基于成像特征(例如,扩散参数)来分配权重,或者使用统计模型来推断权重。在现实中,地面真相的重量是未知的,推动对替代边缘加权方案的探索。这里,我们探索多模态,基于回归的模型,赋予重建的纤维束有向权重和有符号权重。我们发现该模型很好地拟合了观测数据,性能优于一组空模型。估计的权重是特定于主题的,并且高度可靠,即使使用相对较少的训练样本进行拟合,和网络保持许多理想的特征。总之,我们提供了一个简单的框架来加权连接体数据,展示了其易于实施的同时,对其用于典型的连接体分析的实用性进行了基准测试,包括图论建模和大脑行为关联。
    The macroscale connectome is the network of physical, white-matter tracts between brain areas. The connections are generally weighted and their values interpreted as measures of communication efficacy. In most applications, weights are either assigned based on imaging features-e.g. diffusion parameters-or inferred using statistical models. In reality, the ground-truth weights are unknown, motivating the exploration of alternative edge weighting schemes. Here, we explore a multi-modal, regression-based model that endows reconstructed fiber tracts with directed and signed weights. We find that the model fits observed data well, outperforming a suite of null models. The estimated weights are subject-specific and highly reliable, even when fit using relatively few training samples, and the networks maintain a number of desirable features. In summary, we offer a simple framework for weighting connectome data, demonstrating both its ease of implementation while benchmarking its utility for typical connectome analyses, including graph theoretic modeling and brain-behavior associations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    解释大脑强化学习的主要理论框架是时间差异学习(TD)学习,因此,某些单位发出奖励预测误差(RPE)的信号。TD算法传统上被映射到多巴胺能系统上,因为多巴胺神经元的放电特性可以类似于RPE。然而,TD学习的某些预测与实验结果不一致,和以前的算法实现已经做出了关于刺激特定的固定时间基础的不可扩展的假设。我们提出了一个替代框架来描述大脑中的多巴胺信号,FLEX(在预期奖励中灵活学习的错误)。在FLEX,多巴胺释放是相似的,但不等同于RPE,导致与TD相反的预测。虽然FLEX本身是一个一般的理论框架,我们描述了一个具体的,生物物理上合理的实施,其结果与现有和重新分析的实验数据的优势一致。
    The dominant theoretical framework to account for reinforcement learning in the brain is temporal difference learning (TD) learning, whereby certain units signal reward prediction errors (RPE). The TD algorithm has been traditionally mapped onto the dopaminergic system, as firing properties of dopamine neurons can resemble RPEs. However, certain predictions of TD learning are inconsistent with experimental results, and previous implementations of the algorithm have made unscalable assumptions regarding stimulus-specific fixed temporal bases. We propose an alternate framework to describe dopamine signaling in the brain, FLEX (Flexibly Learned Errors in Expected Reward). In FLEX, dopamine release is similar, but not identical to RPE, leading to predictions that contrast to those of TD. While FLEX itself is a general theoretical framework, we describe a specific, biophysically plausible implementation, the results of which are consistent with a preponderance of both existing and reanalyzed experimental data.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电刺激是神经科学的关键工具,无论是在大脑绘图研究和许多治疗应用,如耳蜗,前庭,和视网膜神经植入物。出于安全考虑,刺激仅限于短的双相脉冲。尽管经过几十年的研究和开发,神经植入物导致患者不同的功能恢复。在这项研究中,我们使用计算模型来解释搏动刺激如何影响轴突通道,从而导致神经反应恢复的变异性。现象学的解释被转化为方程,该方程预测诱导激发率作为脉搏率的函数,脉冲幅度,和自发放电率。我们表明,这些方程可以预测具有多种参数的对脉动刺激的模拟响应,以及实验记录的灵长类动物前庭传入对脉动刺激的响应的几个特征。然后,我们讨论了这些效应对改善临床刺激范例和基于电刺激的实验的影响。
    Electrical stimulation is a key tool in neuroscience, both in brain mapping studies and in many therapeutic applications such as cochlear, vestibular, and retinal neural implants. Due to safety considerations, stimulation is restricted to short biphasic pulses. Despite decades of research and development, neural implants lead to varying restoration of function in patients. In this study, we use computational modeling to provide an explanation for how pulsatile stimulation affects axonal channels and therefore leads to variability in restoration of neural responses. The phenomenological explanation is transformed into equations that predict induced firing rate as a function of pulse rate, pulse amplitude, and spontaneous firing rate. We show that these equations predict simulated responses to pulsatile stimulation with a variety of parameters as well as several features of experimentally recorded primate vestibular afferent responses to pulsatile stimulation. We then discuss the implications of these effects for improving clinical stimulation paradigms and electrical stimulation-based experiments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于EEG/MEG对浅表区域和皮质下结构的空间配置的更高灵敏度,来自深层发生器的癫痫活动的电/磁脑图(EEG/MEG)源成像(EMSI)通常具有挑战性。我们先前证明了均值上的相干最大熵(cMEM)方法精确定位浅层皮层发生器及其空间范围的能力。这里,我们提出了一种深度加权自适应的cMEM,以更准确地定位深度生成器。使用癫痫活动的真实MEG/高密度EEG(HD-EEG)模拟和局灶性癫痫患者的实际MEG/HD-EEG记录来评估这些方法。我们在MEM框架中加入了深度加权,以补偿其对表面生成器的偏好。我们还包括了两个海马的网格,作为源模型中的附加深层结构。我们为MEG和HD-EEG生成了5400次发作间癫痫放电的真实模拟,涉及广泛的空间范围和信噪比(SNR)水平,在研究EMSI对16例患者的临床HD-EEG和14例患者的MEG之前。通过目视检查标记临床发作间癫痫放电。我们应用了三种EMSI方法:cMEM,深度加权cMEM和深度加权最小范数估计(MNE)。地面实况被定义为真实的模拟发生器或基于患者可用的临床信息的绘制区域。对于深层来源,与cMEM和深度加权MNE相比,深度加权cMEM改进了定位,而深度加权cMEM不会降低浅表区域的定位精度。对于患者数据,我们观察到深度源的本地化有所改善,尤其是内侧颞叶癫痫患者,cMEM未能重建海马中的初始发生器。深度加权对于MEG(梯度计)比HD-EEG更为重要。当考虑MEM的小波扩展的深度加权时,发现了类似的发现。总之,深度加权cMEM改善了深层源的定位,而不会或最小程度地降低了浅层源的定位。对于癫痫患者,使用MEG和HD-EEG以及临床MEG和HD-EEG进行的广泛模拟证明了这一点。
    Electro/Magneto-EncephaloGraphy (EEG/MEG) source imaging (EMSI) of epileptic activity from deep generators is often challenging due to the higher sensitivity of EEG/MEG to superficial regions and to the spatial configuration of subcortical structures. We previously demonstrated the ability of the coherent Maximum Entropy on the Mean (cMEM) method to accurately localize the superficial cortical generators and their spatial extent. Here, we propose a depth-weighted adaptation of cMEM to localize deep generators more accurately. These methods were evaluated using realistic MEG/high-density EEG (HD-EEG) simulations of epileptic activity and actual MEG/HD-EEG recordings from patients with focal epilepsy. We incorporated depth-weighting within the MEM framework to compensate for its preference for superficial generators. We also included a mesh of both hippocampi, as an additional deep structure in the source model. We generated 5400 realistic simulations of interictal epileptic discharges for MEG and HD-EEG involving a wide range of spatial extents and signal-to-noise ratio (SNR) levels, before investigating EMSI on clinical HD-EEG in 16 patients and MEG in 14 patients. Clinical interictal epileptic discharges were marked by visual inspection. We applied three EMSI methods: cMEM, depth-weighted cMEM and depth-weighted minimum norm estimate (MNE). The ground truth was defined as the true simulated generator or as a drawn region based on clinical information available for patients. For deep sources, depth-weighted cMEM improved the localization when compared to cMEM and depth-weighted MNE, whereas depth-weighted cMEM did not deteriorate localization accuracy for superficial regions. For patients\' data, we observed improvement in localization for deep sources, especially for the patients with mesial temporal epilepsy, for which cMEM failed to reconstruct the initial generator in the hippocampus. Depth weighting was more crucial for MEG (gradiometers) than for HD-EEG. Similar findings were found when considering depth weighting for the wavelet extension of MEM. In conclusion, depth-weighted cMEM improved the localization of deep sources without or with minimal deterioration of the localization of the superficial sources. This was demonstrated using extensive simulations with MEG and HD-EEG and clinical MEG and HD-EEG for epilepsy patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大脑如何同时处理带来互补信息的信号,像原始的感官信号和它们转化的对应物,没有任何破坏性干扰?当代研究强调了大脑在使用去相关反应来减少这种干扰方面的熟练程度。神经生理学发现和人工神经网络都支持信号区分和并行处理的正交表示概念。然而,where,以及如何将原始感官信号转化为更抽象的表示形式尚不清楚。在受过训练的猴子中使用时间模式辨别任务,我们发现第二个体感皮层(S2)有效地隔离了忠实的神经反应,并将其转化为正交子空间。重要的是,用于变换信号的S2群体编码,但不是忠实的人,在此任务的非要求版本中消失了,这表明信号转换和来自下游区域的解码仅是按需活动的。机械计算模型指出增益调制是观察到的上下文相关计算的可能的生物学机制。此外,构成正交群体表示基础的个体神经活动表现出连续的反应,没有确定的集群。这些发现表明大脑,在采用一系列异质神经反应的同时,以上下文相关的方式将种群信号拆分为正交子空间,以增强鲁棒性,性能,提高编码效率。
    How does the brain simultaneously process signals that bring complementary information, like raw sensory signals and their transformed counterparts, without any disruptive interference? Contemporary research underscores the brain\'s adeptness in using decorrelated responses to reduce such interference. Both neurophysiological findings and artificial neural networks support the notion of orthogonal representation for signal differentiation and parallel processing. Yet, where, and how raw sensory signals are transformed into more abstract representations remains unclear. Using a temporal pattern discrimination task in trained monkeys, we revealed that the second somatosensory cortex (S2) efficiently segregates faithful and transformed neural responses into orthogonal subspaces. Importantly, S2 population encoding for transformed signals, but not for faithful ones, disappeared during a nondemanding version of this task, which suggests that signal transformation and their decoding from downstream areas are only active on-demand. A mechanistic computation model points to gain modulation as a possible biological mechanism for the observed context-dependent computation. Furthermore, individual neural activities that underlie the orthogonal population representations exhibited a continuum of responses, with no well-determined clusters. These findings advocate that the brain, while employing a continuum of heterogeneous neural responses, splits population signals into orthogonal subspaces in a context-dependent fashion to enhance robustness, performance, and improve coding efficiency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这项研究评估了在基于电导的规范微电路模型下,脑磁图(MEG)的静息状态动态因果模型(DCM)的可靠性,在后验参数估计和模型证据方面。我们使用来自两个会话的静息状态MEG数据,相隔两周,来自一个由阿尔茨海默病引起的受试者间高差异的队列。我们的重点不是疾病的影响,但在方法的可靠性(如主体内会话协议)上,这对未来的疾病进展和药物干预研究至关重要。为了评估一级DCM的可靠性,我们比较与受试者特定自由能之间的协方差相关的模型证据(即,模型的“质量”)与没有类间相关性的对比。然后,我们使用参数经验贝叶斯(PEB)来研究受试者之间推断的DCM参数概率分布之间的差异。具体来说,我们检查了支持或反对参数差异的证据(I)受试者内部,会内,和纪元之间;(Ii)受试者内部会话之间;和(Iii)受试者之间的现场内,适应参数估计之间的条件依赖性。我们表明,对于时间接近的数据,在类似的情况下,超过95%的推断DCM参数不太可能不同,在会话中谈到相互的可预测性。使用PEB,我们显示了“可靠性”的常规定义与推断模型参数之间的条件依赖性之间的相互关系。我们的分析证实了基于电导的DCM对静息状态神经生理数据的可靠性和可重复性。在这方面,内隐生成模型适用于神经和精神疾病的介入和纵向研究。
    This study assesses the reliability of resting-state dynamic causal modelling (DCM) of magnetoencephalography (MEG) under conductance-based canonical microcircuit models, in terms of both posterior parameter estimates and model evidence. We use resting-state MEG data from two sessions, acquired 2 weeks apart, from a cohort with high between-subject variance arising from Alzheimer\'s disease. Our focus is not on the effect of disease, but on the reliability of the methods (as within-subject between-session agreement), which is crucial for future studies of disease progression and drug intervention. To assess the reliability of first-level DCMs, we compare model evidence associated with the covariance among subject-specific free energies (i.e., the \'quality\' of the models) with versus without interclass correlations. We then used parametric empirical Bayes (PEB) to investigate the differences between the inferred DCM parameter probability distributions at the between subject level. Specifically, we examined the evidence for or against parameter differences (i) within-subject, within-session, and between-epochs; (ii) within-subject between-session; and (iii) within-site between-subjects, accommodating the conditional dependency among parameter estimates. We show that for data acquired close in time, and under similar circumstances, more than 95% of inferred DCM parameters are unlikely to differ, speaking to mutual predictability over sessions. Using PEB, we show a reciprocal relationship between a conventional definition of \'reliability\' and the conditional dependency among inferred model parameters. Our analyses confirm the reliability and reproducibility of the conductance-based DCMs for resting-state neurophysiological data. In this respect, the implicit generative modelling is suitable for interventional and longitudinal studies of neurological and psychiatric disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Objective.相位-振幅耦合(PAC),较快的脑节律的振幅与较慢的脑节律的相位的耦合,在大脑活动中起着重要作用,并与各种神经系统疾病有关。例如,在帕金森病中,运动皮层中β(13-30Hz)和γ(30-100Hz)节律之间的PAC被夸大了,而在老年痴呆症中,θ(4-8Hz)和伽马节律之间的PAC减小。因此,使用脑刺激调节PAC(即,减少或增强PAC)可以开辟新的治疗途径。然而,虽然以前有报道称锁相刺激可以增加PAC,目前尚不清楚调节PAC的最佳刺激策略可能是什么。这里,我们提供了一个理论框架来缩小旨在调节PAC的刺激的实验优化,否则将依赖于试验和错误。方法。我们使用斯图尔特-兰道模型进行分析预测,并在更现实的耦合神经群模型中证实这些预测。主要结果。我们的框架指定了刺激波形的关键傅立叶系数,应进行调整以最佳地调制PAC。根据快速群体的振幅响应曲线的特征,这些分量可能包括慢频率,快速的频率,这些组合,以及它们的谐波。我们还表明,这些傅立叶分量之间的最佳能量平衡取决于内源性缓慢和快速节律的相对强度,并且快速组件与快节奏的对齐应在整个慢速周期中发生变化。此外,我们确定需要将刺激锁相到快和/或慢节奏的条件。意义。一起,我们的理论框架为指导开发旨在调节PAC以获得治疗益处的创新且更有效的脑刺激奠定了基础.
    Objective.Phase-amplitude coupling (PAC), the coupling of the amplitude of a faster brain rhythm to the phase of a slower brain rhythm, plays a significant role in brain activity and has been implicated in various neurological disorders. For example, in Parkinson\'s disease, PAC between the beta (13-30 Hz) and gamma (30-100 Hz) rhythms in the motor cortex is exaggerated, while in Alzheimer\'s disease, PAC between the theta (4-8 Hz) and gamma rhythms is diminished. Modulating PAC (i.e. reducing or enhancing PAC) using brain stimulation could therefore open new therapeutic avenues. However, while it has been previously reported that phase-locked stimulation can increase PAC, it is unclear what the optimal stimulation strategy to modulate PAC might be. Here, we provide a theoretical framework to narrow down the experimental optimisation of stimulation aimed at modulating PAC, which would otherwise rely on trial and error.Approach.We make analytical predictions using a Stuart-Landau model, and confirm these predictions in a more realistic model of coupled neural populations.Main results.Our framework specifies the critical Fourier coefficients of the stimulation waveform which should be tuned to optimally modulate PAC. Depending on the characteristics of the amplitude response curve of the fast population, these components may include the slow frequency, the fast frequency, combinations of these, as well as their harmonics. We also show that the optimal balance of energy between these Fourier components depends on the relative strength of the endogenous slow and fast rhythms, and that the alignment of fast components with the fast rhythm should change throughout the slow cycle. Furthermore, we identify the conditions requiring to phase-lock stimulation to the fast and/or slow rhythms.Significance.Together, our theoretical framework lays the foundation for guiding the development of innovative and more effective brain stimulation aimed at modulating PAC for therapeutic benefit.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    丘脑底核中的神经元亚群具有不同的活动模式,与漂移扩散模型的三个假设有关。
    Subpopulations of neurons in the subthalamic nucleus have distinct activity patterns that relate to the three hypotheses of the Drift Diffusion Model.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    灵活的计算是智能行为的标志。然而,人们对神经网络如何在上下文中重新配置以进行不同的计算知之甚少。在目前的工作中,通过研究多任务人工递归神经网络,我们确定了模块化计算的算法神经基础。动态系统分析揭示了学习的计算策略,反映了训练任务集的模块化子任务结构。动态图案,它们是通过动力学实现特定计算的神经活动的重复模式,比如吸引子,决策边界和旋转,跨任务重用。例如,需要记忆连续循环变量的任务重新利用了相同的环吸引子。我们表明,当单元激活函数被限制为正数时,动态基序是由单元簇实现的。聚集性病变导致模块化性能缺陷。在学习的初始阶段之后,重新配置了基序以进行快速迁移学习。这项工作建立了动态基序作为组成计算的基本单位,介于神经元和网络之间。因为全脑研究同时记录来自多个专门系统的活动,动态主题框架将指导有关专业化和泛化的问题。
    Flexible computation is a hallmark of intelligent behavior. However, little is known about how neural networks contextually reconfigure for different computations. In the present work, we identified an algorithmic neural substrate for modular computation through the study of multitasking artificial recurrent neural networks. Dynamical systems analyses revealed learned computational strategies mirroring the modular subtask structure of the training task set. Dynamical motifs, which are recurring patterns of neural activity that implement specific computations through dynamics, such as attractors, decision boundaries and rotations, were reused across tasks. For example, tasks requiring memory of a continuous circular variable repurposed the same ring attractor. We showed that dynamical motifs were implemented by clusters of units when the unit activation function was restricted to be positive. Cluster lesions caused modular performance deficits. Motifs were reconfigured for fast transfer learning after an initial phase of learning. This work establishes dynamical motifs as a fundamental unit of compositional computation, intermediate between neuron and network. As whole-brain studies simultaneously record activity from multiple specialized systems, the dynamical motif framework will guide questions about specialization and generalization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号